mysql -->Searching and Modifying JSON Values

Searching and Modifying JSON Values

A JSON path expression selects a value within a JSON document.

Path expressions are useful with functions that extract parts of or modify a JSON document, to specify where within that document to operate. For example, the following query extracts from a JSON document the value of the member with the name key:

mysql> SELECT JSON_EXTRACT('{"id": 14, "name": "Aztalan"}', '$.name');
+---------------------------------------------------------+
| JSON_EXTRACT('{"id": 14, "name": "Aztalan"}', '$.name') |
+---------------------------------------------------------+
| "Aztalan"                                               |
+---------------------------------------------------------+

Path syntax uses a leading $ character to represent the JSON document under consideration, optionally followed by selectors that indicate successively more specific parts of the document:

  • A period followed by a key name names the member in an object with the given key. The key name must be specified within double quotation marks if the name without quotes is not legal within path expressions (for example, if it contains a space).

  • [N] appended to a path that selects an array names the value at position N within the array. Array positions are integers beginning with zero. If path does not select an array value, path[0] evaluates to the same value as path:

    mysql> SELECT JSON_SET('"x"', '$[0]', 'a');
    +------------------------------+
    | JSON_SET('"x"', '$[0]', 'a') |
    +------------------------------+
    | "a"                          |
    +------------------------------+
    1 row in set (0.00 sec)
  • [M to N] specifies a subset or range of array values starting with the value at position M, and ending with the value at position N.

    last is supported as a synonym for the index of the rightmost array element. Relative addressing of array elements is also supported. If path does not select an array value, path[last] evaluates to the same value as path, as shown later in this section (see Rightmost array element).

  • Paths can contain * or ** wildcards:

    • .[*] evaluates to the values of all members in a JSON object.

    • [*] evaluates to the values of all elements in a JSON array.

    • prefix**suffix evaluates to all paths that begin with the named prefix and end with the named suffix.

  • A path that does not exist in the document (evaluates to nonexistent data) evaluates to NULL.

Let $ refer to this JSON array with three elements:

[3, {"a": [5, 6], "b": 10}, [99, 100]]

Then:

  • $[0] evaluates to 3.

  • $[1] evaluates to {"a": [5, 6], "b": 10}.

  • $[2] evaluates to [99, 100].

  • $[3] evaluates to NULL (it refers to the fourth array element, which does not exist).

Because $[1] and $[2] evaluate to nonscalar values, they can be used as the basis for more-specific path expressions that select nested values. Examples:

  • $[1].a evaluates to [5, 6].

  • $[1].a[1] evaluates to 6.

  • $[1].b evaluates to 10.

  • $[2][0] evaluates to 99.

As mentioned previously, path components that name keys must be quoted if the unquoted key name is not legal in path expressions. Let $ refer to this value:

{"a fish": "shark", "a bird": "sparrow"}

The keys both contain a space and must be quoted:

  • $."a fish" evaluates to shark.

  • $."a bird" evaluates to sparrow.

Paths that use wildcards evaluate to an array that can contain multiple values:

mysql> SELECT JSON_EXTRACT('{"a": 1, "b": 2, "c": [3, 4, 5]}', '$.*');
+---------------------------------------------------------+
| JSON_EXTRACT('{"a": 1, "b": 2, "c": [3, 4, 5]}', '$.*') |
+---------------------------------------------------------+
| [1, 2, [3, 4, 5]]                                       |
+---------------------------------------------------------+
mysql> SELECT JSON_EXTRACT('{"a": 1, "b": 2, "c": [3, 4, 5]}', '$.c[*]');
+------------------------------------------------------------+
| JSON_EXTRACT('{"a": 1, "b": 2, "c": [3, 4, 5]}', '$.c[*]') |
+------------------------------------------------------------+
| [3, 4, 5]                                                  |
+------------------------------------------------------------+

In the following example, the path $**.b evaluates to multiple paths ($.a.b and $.c.b) and produces an array of the matching path values:

mysql> SELECT JSON_EXTRACT('{"a": {"b": 1}, "c": {"b": 2}}', '$**.b');
+---------------------------------------------------------+
| JSON_EXTRACT('{"a": {"b": 1}, "c": {"b": 2}}', '$**.b') |
+---------------------------------------------------------+
| [1, 2]                                                  |
+---------------------------------------------------------+

Ranges from arrays.  You can use ranges with the to keyword to specify subsets of JSON arrays. For example, $[1 to 3] includes the second, third, and fourth elements of an array, as shown here:

mysql> SELECT JSON_EXTRACT('[1, 2, 3, 4, 5]', '$[1 to 3]');
+----------------------------------------------+
| JSON_EXTRACT('[1, 2, 3, 4, 5]', '$[1 to 3]') |
+----------------------------------------------+
| [2, 3, 4]                                    |
+----------------------------------------------+
1 row in set (0.00 sec)

The syntax is M to N, where M and N are, respectively, the first and last indexes of a range of elements from a JSON array. N must be greater than MMmust be greater than or equal to 0. Array elements are indexed beginning with 0.

You can use ranges in contexts where wildcards are supported.

Rightmost array element.  The last keyword is supported as a synonym for the index of the last element in an array. Expressions of the form last - Ncan be used for relative addressing, and within range definitions, like this:

mysql> SELECT JSON_EXTRACT('[1, 2, 3, 4, 5]', '$[last-3 to last-1]');
+--------------------------------------------------------+
| JSON_EXTRACT('[1, 2, 3, 4, 5]', '$[last-3 to last-1]') |
+--------------------------------------------------------+
| [2, 3, 4]                                              |
+--------------------------------------------------------+
1 row in set (0.01 sec)

If the path is evaluated against a value that is not an array, the result of the evaluation is the same as if the value had been wrapped in a single-element array:

mysql> SELECT JSON_REPLACE('"Sakila"', '$[last]', 10);
+-----------------------------------------+
| JSON_REPLACE('"Sakila"', '$[last]', 10) |
+-----------------------------------------+
| 10                                      |
+-----------------------------------------+
1 row in set (0.00 sec)

You can use column->path with a JSON column identifier and JSON path expression as a synonym for JSON_EXTRACT(columnpath). SeeSection 12.16.3, “Functions That Search JSON Values”, for more information. See also Indexing a Generated Column to Provide a JSON Column Index.

Some functions take an existing JSON document, modify it in some way, and return the resulting modified document. Path expressions indicate where in the document to make changes. For example, the JSON_SET()JSON_INSERT(), and JSON_REPLACE() functions each take a JSON document, plus one or more path-value pairs that describe where to modify the document and the values to use. The functions differ in how they handle existing and nonexisting values within the document.

Consider this document:

mysql> SET @j = '["a", {"b": [true, false]}, [10, 20]]';

JSON_SET() replaces values for paths that exist and adds values for paths that do not exist:.

mysql> SELECT JSON_SET(@j, '$[1].b[0]', 1, '$[2][2]', 2);
+--------------------------------------------+
| JSON_SET(@j, '$[1].b[0]', 1, '$[2][2]', 2) |
+--------------------------------------------+
| ["a", {"b": [1, false]}, [10, 20, 2]]      |
+--------------------------------------------+

In this case, the path $[1].b[0] selects an existing value (true), which is replaced with the value following the path argument (1). The path $[2][2] does not exist, so the corresponding value (2) is added to the value selected by $[2].

JSON_INSERT() adds new values but does not replace existing values:

mysql> SELECT JSON_INSERT(@j, '$[1].b[0]', 1, '$[2][2]', 2);
+-----------------------------------------------+
| JSON_INSERT(@j, '$[1].b[0]', 1, '$[2][2]', 2) |
+-----------------------------------------------+
| ["a", {"b": [true, false]}, [10, 20, 2]]      |
+-----------------------------------------------+

JSON_REPLACE() replaces existing values and ignores new values:

mysql> SELECT JSON_REPLACE(@j, '$[1].b[0]', 1, '$[2][2]', 2);
+------------------------------------------------+
| JSON_REPLACE(@j, '$[1].b[0]', 1, '$[2][2]', 2) |
+------------------------------------------------+
| ["a", {"b": [1, false]}, [10, 20]]             |
+------------------------------------------------+

The path-value pairs are evaluated left to right. The document produced by evaluating one pair becomes the new value against which the next pair is evaluated.

JSON_REMOVE() takes a JSON document and one or more paths that specify values to be removed from the document. The return value is the original document minus the values selected by paths that exist within the document:

mysql> SELECT JSON_REMOVE(@j, '$[2]', '$[1].b[1]', '$[1].b[1]');
+---------------------------------------------------+
| JSON_REMOVE(@j, '$[2]', '$[1].b[1]', '$[1].b[1]') |
+---------------------------------------------------+
| ["a", {"b": [true]}]                              |
+---------------------------------------------------+

The paths have these effects:

  • $[2] matches [10, 20] and removes it.

  • The first instance of $[1].b[1] matches false in the b element and removes it.

  • The second instance of $[1].b[1] matches nothing: That element has already been removed, the path no longer exists, and has no effect.

Comparison and Ordering of JSON Values

JSON values can be compared using the =<<=>>=<>!=, and <=> operators.

The following comparison operators and functions are not yet supported with JSON values:

A workaround for the comparison operators and functions just listed is to cast JSON values to a native MySQL numeric or string data type so they have a consistent non-JSON scalar type.

Comparison of JSON values takes place at two levels. The first level of comparison is based on the JSON types of the compared values. If the types differ, the comparison result is determined solely by which type has higher precedence. If the two values have the same JSON type, a second level of comparison occurs using type-specific rules.

The following list shows the precedences of JSON types, from highest precedence to the lowest. (The type names are those returned by the JSON_TYPE()function.) Types shown together on a line have the same precedence. Any value having a JSON type listed earlier in the list compares greater than any value having a JSON type listed later in the list.

BLOB
BIT
OPAQUE
DATETIME
TIME
DATE
BOOLEAN
ARRAY
OBJECT
STRING
INTEGER, DOUBLE
NULL

For JSON values of the same precedence, the comparison rules are type specific:

  • BLOB

    The first N bytes of the two values are compared, where N is the number of bytes in the shorter value. If the first N bytes of the two values are identical, the shorter value is ordered before the longer value.

  • BIT

    Same rules as for BLOB.

  • OPAQUE

    Same rules as for BLOBOPAQUE values are values that are not classified as one of the other types.

  • DATETIME

    A value that represents an earlier point in time is ordered before a value that represents a later point in time. If two values originally come from the MySQL DATETIME and TIMESTAMP types, respectively, they are equal if they represent the same point in time.

  • TIME

    The smaller of two time values is ordered before the larger one.

  • DATE

    The earlier date is ordered before the more recent date.

  • ARRAY

    Two JSON arrays are equal if they have the same length and values in corresponding positions in the arrays are equal.

    If the arrays are not equal, their order is determined by the elements in the first position where there is a difference. The array with the smaller value in that position is ordered first. If all values of the shorter array are equal to the corresponding values in the longer array, the shorter array is ordered first.

    Example:

    [] < ["a"] < ["ab"] < ["ab", "cd", "ef"] < ["ab", "ef"]
  • BOOLEAN

    The JSON false literal is less than the JSON true literal.

  • OBJECT

    Two JSON objects are equal if they have the same set of keys, and each key has the same value in both objects.

    Example:

    {"a": 1, "b": 2} = {"b": 2, "a": 1}

    The order of two objects that are not equal is unspecified but deterministic.

  • STRING

    Strings are ordered lexically on the first N bytes of the utf8mb4 representation of the two strings being compared, where N is the length of the shorter string. If the first N bytes of the two strings are identical, the shorter string is considered smaller than the longer string.

    Example:

    "a" < "ab" < "b" < "bc"

    This ordering is equivalent to the ordering of SQL strings with collation utf8mb4_bin. Because utf8mb4_bin is a binary collation, comparison of JSON values is case-sensitive:

    "A" < "a"
  • INTEGERDOUBLE

    JSON values can contain exact-value numbers and approximate-value numbers. For a general discussion of these types of numbers, see Section 9.1.2, “Numeric Literals”.

    The rules for comparing native MySQL numeric types are discussed in Section 12.2, “Type Conversion in Expression Evaluation”, but the rules for comparing numbers within JSON values differ somewhat:

    • In a comparison between two columns that use the native MySQL INT and DOUBLE numeric types, respectively, it is known that all comparisons involve an integer and a double, so the integer is converted to double for all rows. That is, exact-value numbers are converted to approximate-value numbers.

    • On the other hand, if the query compares two JSON columns containing numbers, it cannot be known in advance whether numbers will be integer or double. To provide the most consistent behavior across all rows, MySQL converts approximate-value numbers to exact-value numbers. The resulting ordering is consistent and does not lose precision for the exact-value numbers. For example, given the scalars 9223372036854775805, 9223372036854775806, 9223372036854775807 and 9.223372036854776e18, the order is such as this:

      9223372036854775805 < 9223372036854775806 < 9223372036854775807
      < 9.223372036854776e18 = 9223372036854776000 < 9223372036854776001

    Were JSON comparisons to use the non-JSON numeric comparison rules, inconsistent ordering could occur. The usual MySQL comparison rules for numbers yield these orderings:

    • Integer comparison:

      9223372036854775805 < 9223372036854775806 < 9223372036854775807

      (not defined for 9.223372036854776e18)

    • Double comparison:

      9223372036854775805 = 9223372036854775806 = 9223372036854775807 = 9.223372036854776e18

For comparison of any JSON value to SQL NULL, the result is UNKNOWN.

For comparison of JSON and non-JSON values, the non-JSON value is converted to JSON according to the rules in the following table, then the values compared as described previously.

Converting between JSON and non-JSON values

The following table provides a summary of the rules that MySQL follows when casting between JSON values and values of other types:

Table 11.3 JSON Conversion Rules

other typeCAST(other type AS JSON)CAST(JSON AS other type)
JSON No change No change
utf8 character type (utf8mb4utf8ascii) The string is parsed into a JSON value. The JSON value is serialized into a utf8mb4 string.
Other character types Other character encodings are implicitly converted toutf8mb4 and treated as described for utf8 character type. The JSON value is serialized into a utf8mb4 string, then cast to the other character encoding. The result may not be meaningful.
NULL Results in a NULL value of type JSON. Not applicable.
Geometry types The geometry value is converted into a JSON document by calling ST_AsGeoJSON(). Illegal operation. Workaround: Pass the result ofCAST(json_val AS CHAR) to ST_GeomFromGeoJSON().
All other types Results in a JSON document consisting of a single scalar value. Succeeds if the JSON document consists of a single scalar value of the target type and that scalar value can be cast to the target type. Otherwise, returns NULL and produces a warning.

ORDER BY and GROUP BY for JSON values works according to these principles:

  • Ordering of scalar JSON values uses the same rules as in the preceding discussion.

  • For ascending sorts, SQL NULL orders before all JSON values, including the JSON null literal; for descending sorts, SQL NULL orders after all JSON values, including the JSON null literal.

  • Sort keys for JSON values are bound by the value of the max_sort_length system variable, so keys that differ only after the first max_sort_lengthbytes compare as equal.

  • Sorting of nonscalar values is not currently supported and a warning occurs.

For sorting, it can be beneficial to cast a JSON scalar to some other native MySQL type. For example, if a column named jdoc contains JSON objects having a member consisting of an id key and a nonnegative value, use this expression to sort by id values:

ORDER BY CAST(JSON_EXTRACT(jdoc, '$.id') AS UNSIGNED)

If there happens to be a generated column defined to use the same expression as in the ORDER BY, the MySQL optimizer recognizes that and considers using the index for the query execution plan. See Section 8.3.11, “Optimizer Use of Generated Column Indexes”.

Aggregation of JSON Values

For aggregation of JSON values, SQL NULL values are ignored as for other data types. Non-NULL values are converted to a numeric type and aggregated, except for MIN()MAX(), and GROUP_CONCAT(). The conversion to number should produce a meaningful result for JSON values that are numeric scalars, although (depending on the values) truncation and loss of precision may occur. Conversion to number of other JSON values may not produce a meaningful result.

 

posted on   &大飞  阅读(476)  评论(0编辑  收藏  举报

编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
点击右上角即可分享
微信分享提示