storm-KafkaSpuout源码分析

一、属性

//org.apache.storm.spout.SpoutOutputCollector
protected SpoutOutputCollector collector;

//org.apache.storm.kafka.spout.KafkaSpoutConfig
private final KafkaSpoutConfig<K, V> kafkaSpoutConfig;

//consumer工厂
private KafkaConsumerFactory kafkaConsumerFactory;

//consumer
private transient KafkaConsumer<K, V> kafkaConsumer;

//是否是consume自动提交
private transient boolean consumerAutoCommitMode;

//首次拉取消息的offset
private transient FirstPollOffsetStrategy firstPollOffsetStrategy;

//重试机制
private transient KafkaSpoutRetryService retryService;

//提交offset的定时器
private transient Timer commitTimer;

//是否已经初始化
private transient boolean initialized;

//offset管理器
private transient Map<TopicPartition, OffsetManager> offsetManagers;

//已经发射的元组集合
private transient Set<KafkaSpoutMessageId> emitted;

//等待发射的元组
private transient Iterator<ConsumerRecord<K, V>> waitingToEmit;

//允许未提交的offset数量,达到这个值后将提交offset
private transient long numUncommittedOffsets;

//刷新订阅主题的定时器
private transient Timer refreshSubscriptionTimer;

//拓扑关系上下文
private transient TopologyContext context;

其中:

private transient Map<TopicPartition, OffsetManager> offsetManagers;
private transient Set<KafkaSpoutMessageId> emitted;
private transient Iterator<ConsumerRecord<K, V>> waitingToEmit;

KafkaSpout就是围绕着这3个集合进行的。

当拉取消息后首先放到waitingToEmit,然后发射后放到emitted中,最后ack后放到offsetManagers。理解了这3个的关系就很容易理解整个流程了

二、构造方法

KafkaSpout继承自BaseRichSpout并覆盖实现了(因为父类是空实现)所有方法,而BaseRichSpout又extends BaseComponent implements IRichSpout。因此KafkaSpout整体结构如下:

KafkaSpout的构造方法:

//传入一个KafkaSpoutConfig来构造KafkaSpout,使用默认的consumer factory
public KafkaSpout(KafkaSpoutConfig<K, V> kafkaSpoutConfig) {
    this(kafkaSpoutConfig, new KafkaConsumerFactoryDefault());
}

//传入KakfaSpoutConfig和KafkaConsumerFactory来构造
KafkaSpout(KafkaSpoutConfig<K, V> kafkaSpoutConfig, KafkaConsumerFactory<K, V> kafkaConsumerFactory) {
    this.kafkaConsumerFactory = kafkaConsumerFactory;
    this.kafkaSpoutConfig = kafkaSpoutConfig;
}

其中KafkaSpoutConfig包含了对KafkaSpout的所有配置以及对应consumer的配置。

KafkaConsumerFactoryDefault()是一个默认的consumer factory实现,如下:

	public class KafkaConsumerFactoryDefault<K, V> implements KafkaConsumerFactory<K, V> {
    public KafkaConsumerFactoryDefault() {
    }

    public KafkaConsumer<K, V> createConsumer(KafkaSpoutConfig<K, V> kafkaSpoutConfig) {
        return new KafkaConsumer(kafkaSpoutConfig.getKafkaProps(), kafkaSpoutConfig.getKeyDeserializer(), kafkaSpoutConfig.getValueDeserializer());
    }
}

三、主要方法解析

1.open()

实现自ISpout,主要是进行一些初始化

public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
	//未初始化
    this.initialized = false;
	//设置上下文
    this.context = context;
	//收集器
    this.collector = collector;
	//允许未提交的Offset数量,默认0,及实时提交
    this.numUncommittedOffsets = 0L;
	//第一次拉取消息的offset,默认UNCOMMITTED_EARLIEST,即最早未提交
    this.firstPollOffsetStrategy = this.kafkaSpoutConfig.getFirstPollOffsetStrategy();
	//消费者的offset提交模式,默认false,即由Kafkaspout管理提交offset,若果为true则有consumer自动提交offset
    this.consumerAutoCommitMode = this.kafkaSpoutConfig.isConsumerAutoCommitMode();
	//重试服务
    this.retryService = this.kafkaSpoutConfig.getRetryService();
	//入股不是自动提交模式,则在定时提交,时间间隔由KafkaSpoutConfig传入
    if (!this.consumerAutoCommitMode) {
        this.commitTimer = new Timer(500L, this.kafkaSpoutConfig.getOffsetsCommitPeriodMs(), TimeUnit.MILLISECONDS);
    }
	//重新刷新订阅主题定时器,默认500ms,时间间隔由KafkaSpoutConfig传入
    this.refreshSubscriptionTimer = new Timer(500L, this.kafkaSpoutConfig.getPartitionRefreshPeriodMs(), TimeUnit.MILLISECONDS);
	//实例化
    this.offsetManagers = new HashMap();
    this.emitted = new HashSet();
    this.waitingToEmit = Collections.emptyListIterator();
    LOG.info("Kafka Spout opened with the following configuration: {}", this.kafkaSpoutConfig);
}

2.setAcked()

确认数据已被正确处理

当数据被bolt处理后,bolt调用ack后表明已被争取处理,在这里将TopicPartition和offset加入offsetManagers

private void setAcked(TopicPartition tp, long fetchOffset) {
    if (!this.consumerAutoCommitMode && !this.offsetManagers.containsKey(tp)) {
        this.offsetManagers.put(tp, new OffsetManager(tp, fetchOffset));
    }
}

3.nextTuple()

发送元组。

大致逻辑如下:

首先判断是否已经完成初始化,如果是,则判断是否已经提交,如果已提交,则确认提交,接着判断是否允许从Kafka拉取数据,允许的条件是:

 boolean poll = !this.waitingToEmit() && (this.numUncommittedOffsets - (long)readyMessageCount < (long)maxUncommittedOffsets || this.consumerAutoCommitMode);

即没有正在等待提交的并且未提交的数量-准备好的数量<最大允许未提交的数量,如果为true,则拉取消息并加入到等待提交的列表中;然后判断是否正在等待发射,如果是,则发射元组。看下边代码会更清楚一些。

public void nextTuple() {
    try {
		//如果已经初始化
        if (this.initialized) {
			//如果已经提交
            if (this.commit()) {
				//确认提交
                this.commitOffsetsForAckedTuples();
            }
			//如果允许拉取
            if (this.poll()) {
                try {
					//拉取Kafka数据并放进waitingToEmit集合中
                    this.setWaitingToEmit(this.pollKafkaBroker());
                } catch (RetriableException var2) {
                    LOG.error("Failed to poll from kafka.", var2);
                }
            }
			//如果正在等待发射,则发射
            if (this.waitingToEmit()) {
                this.emit();
            }
        } else {
            LOG.debug("Spout not initialized. Not sending tuples until initialization completes");
        }
    } catch (InterruptException var3) {
        this.throwKafkaConsumerInterruptedException();
    }

}

5.poll()

private boolean poll() {
    int maxUncommittedOffsets = this.kafkaSpoutConfig.getMaxUncommittedOffsets();
    int readyMessageCount = this.retryService.readyMessageCount();
    boolean poll = !this.waitingToEmit() && (this.numUncommittedOffsets - (long)readyMessageCount < (long)maxUncommittedOffsets || this.consumerAutoCommitMode);
    if (!poll) {
        if (this.waitingToEmit()) {
            LOG.debug("Not polling. Tuples waiting to be emitted. [{}] uncommitted offsets across all topic partitions", this.numUncommittedOffsets);
        }

        if (this.numUncommittedOffsets >= (long)maxUncommittedOffsets && !this.consumerAutoCommitMode) {
            LOG.debug("Not polling. [{}] uncommitted offsets across all topic partitions has reached the threshold of [{}]", this.numUncommittedOffsets, maxUncommittedOffsets);
        }
    }

    return poll;
}

6.commit()

判断是改提交。

如果 非 自动提交模式 并且 提交时间间隔已到则返回true

private boolean commit() {
    return !this.consumerAutoCommitMode && this.commitTimer.isExpiredResetOnTrue();
}

7.waitingToEmit()

是否正在等待发射.

如果 waitingToEmit不为空 则返回true,表明有正在等待发射的

private boolean waitingToEmit() {
    return this.waitingToEmit != null && this.waitingToEmit.hasNext();
}

8.setWaitingToEmit()

设置准备发射的。

作用就是将消费到的数据添加到一个等待提交的列表waitingToEmit中

public void setWaitingToEmit(ConsumerRecords<K, V> consumerRecords) {
    List<ConsumerRecord<K, V>> waitingToEmitList = new LinkedList();
    Iterator var3 = consumerRecords.partitions().iterator();
	//遍历所有主题分区
    while(var3.hasNext()) {
		//得到主题分区
        TopicPartition tp = (TopicPartition)var3.next();
		//添加对应的主题分区数据
        waitingToEmitList.addAll(consumerRecords.records(tp));
    }
	//添加到等待发射的
    this.waitingToEmit = waitingToEmitList.iterator();
}

9.pollKafkaBroker

拉取Kafka数据

private ConsumerRecords<K, V> pollKafkaBroker() {
	//先处理未成功的进行重置offset操作
    this.doSeekRetriableTopicPartitions();
	//如果到了刷新订阅时间,则先刷新
    if (this.refreshSubscriptionTimer.isExpiredResetOnTrue()) {
        this.kafkaSpoutConfig.getSubscription().refreshAssignment();
    }
	//拉取数据
    ConsumerRecords<K, V> consumerRecords = this.kafkaConsumer.poll(this.kafkaSpoutConfig.getPollTimeoutMs());
    int numPolledRecords = consumerRecords.count();
    LOG.debug("Polled [{}] records from Kafka. [{}] uncommitted offsets across all topic partitions", numPolledRecords, this.numUncommittedOffsets);
    return consumerRecords;
}

10.doSeekRetriableTopicPartitions

private void doSeekRetriableTopicPartitions() {
	//先获取需要重试的集合
    Map<TopicPartition, Long> retriableTopicPartitions = this.retryService.earliestRetriableOffsets();
    Iterator var2 = retriableTopicPartitions.entrySet().iterator();

    while(var2.hasNext()) {
        Entry<TopicPartition, Long> retriableTopicPartitionAndOffset = (Entry)var2.next();
		//重新定位offset
        this.kafkaConsumer.seek((TopicPartition)retriableTopicPartitionAndOffset.getKey(), ((Long)retriableTopicPartitionAndOffset.getValue()).longValue());
    }

}

11.emit()

发射元组。注意:这里只是对等待发射的waitingToEmit列表进行操作。

private void emit() {
	//如果没有发射并且存在等待发射的,则将正在等待的从列表中移除,然后进行发射(发射操作在nextTuple()中)
    while(!this.emitTupleIfNotEmitted((ConsumerRecord)this.waitingToEmit.next()) && this.waitingToEmit.hasNext()) {
        this.waitingToEmit.remove();
    }
}

12.emitTupleIfNotEmitted()

发射没有发射的元组

主要逻辑如下:

首先判断原则是否已经被确认,

然后判断是否已经发射,

满足以上两个条件之一时说明不需要发射。

然后判断需不需要发射tuple:主要是判断tuple是否为空,以及配置中是否允许发射空的tuple。如果需要发射则:

先判断重试列表中有没有当前tuple,若有,则判断是否需要重发,若需要,则继续判断是否是自动提交offset模式,若自动提交则直接发射,否则加入offsetManagers,然后判断是否在重试列表中,是则从重试列表中移除,否则将未提交offset数量加1,然后发射

private boolean emitTupleIfNotEmitted(ConsumerRecord<K, V> record) {
    TopicPartition tp = new TopicPartition(record.topic(), record.partition());
    KafkaSpoutMessageId msgId = this.retryService.getMessageId(record);
    if (this.offsetManagers.containsKey(tp) && ((OffsetManager)this.offsetManagers.get(tp)).contains(msgId)) {
        LOG.trace("Tuple for record [{}] has already been acked. Skipping", record);
    } else if (this.emitted.contains(msgId)) {
        LOG.trace("Tuple for record [{}] has already been emitted. Skipping", record);
    } else {
        List<Object> tuple = this.kafkaSpoutConfig.getTranslator().apply(record);
        if (this.isEmitTuple(tuple)) {
            boolean isScheduled = this.retryService.isScheduled(msgId);
            if (!isScheduled || this.retryService.isReady(msgId)) {
                if (this.consumerAutoCommitMode) {
                    if (tuple instanceof KafkaTuple) {
                        this.collector.emit(((KafkaTuple)tuple).getStream(), tuple);
                    } else {
                        this.collector.emit(tuple);
                    }
                } else {
                    this.emitted.add(msgId);
                    ((OffsetManager)this.offsetManagers.get(tp)).addToEmitMsgs(msgId.offset());
                    if (isScheduled) {
                        this.retryService.remove(msgId);
                    } else {
                        ++this.numUncommittedOffsets;
                    }

                    if (tuple instanceof KafkaTuple) {
                        this.collector.emit(((KafkaTuple)tuple).getStream(), tuple, msgId);
                    } else {
                        this.collector.emit(tuple, msgId);
                    }
                }

                LOG.trace("Emitted tuple [{}] for record [{}] with msgId [{}]", new Object[]{tuple, record, msgId});
                return true;
            }
        } else {
            LOG.debug("Not emitting null tuple for record [{}] as defined in configuration.", record);
            msgId.setEmitted(false);
            this.ack(msgId);
        }
    }

    return false;
}

12.isEmitTuple()

是否发送元组。先判空,然后在判断config中是否允许发射空原则,满足一个即可

private boolean isEmitTuple(List<Object> tuple) {
    return tuple != null || this.kafkaSpoutConfig.isEmitNullTuples();
}

13.commitOffsetsForAckedTuples()

提交已经确认的Tuple的偏移量

private void commitOffsetsForAckedTuples() {
	//用来保存将要提交的数据
    Map<TopicPartition, OffsetAndMetadata> nextCommitOffsets = new HashMap();
	//从offsetManagers获取数据
    Iterator var2 = this.offsetManagers.entrySet().iterator();

    Entry tpOffset;
    while(var2.hasNext()) {
        tpOffset = (Entry)var2.next();
        OffsetAndMetadata nextCommitOffset = ((OffsetManager)tpOffset.getValue()).findNextCommitOffset();
        if (nextCommitOffset != null) {
            nextCommitOffsets.put(tpOffset.getKey(), nextCommitOffset);
        }
    }

    if (!nextCommitOffsets.isEmpty()) {
		//进行提交操作
        this.kafkaConsumer.commitSync(nextCommitOffsets);
        LOG.debug("Offsets successfully committed to Kafka [{}]", nextCommitOffsets);
        var2 = nextCommitOffsets.entrySet().iterator();
		//日志输出未提交的
        while(var2.hasNext()) {
            tpOffset = (Entry)var2.next();
            TopicPartition tp = (TopicPartition)tpOffset.getKey();
            OffsetManager offsetManager = (OffsetManager)this.offsetManagers.get(tp);
            long numCommittedOffsets = offsetManager.commit((OffsetAndMetadata)tpOffset.getValue());
            this.numUncommittedOffsets -= numCommittedOffsets;
            LOG.debug("[{}] uncommitted offsets across all topic partitions", this.numUncommittedOffsets);
        }
    } else {
        LOG.trace("No offsets to commit. {}", this);
    }

}

14.ack()

public void ack(Object messageId) {
	//转化为KafkaMessageId
    KafkaSpoutMessageId msgId = (KafkaSpoutMessageId)messageId;
	//如果已经提交的不包含msgId
    if (!this.emitted.contains(msgId)) {
		//如果已经提交
        if (msgId.isEmitted()) {
            LOG.debug("Received ack for message [{}], associated with tuple emitted for a ConsumerRecord that came from a topic-partition that this consumer group instance is no longer tracking due to rebalance/partition reassignment. No action taken.", msgId);
        } else {
            LOG.debug("Received direct ack for message [{}], associated with null tuple", msgId);
        }
    } else {//如果不已提交列表不包含msgId
		//如果非自动提交模式
        if (!this.consumerAutoCommitMode) {
			//添加到确认列表
            ((OffsetManager)this.offsetManagers.get(msgId.getTopicPartition())).addToAckMsgs(msgId);
        }
		//移除
        this.emitted.remove(msgId);
    }

}

15.fail()

失败处理。

主要操作就是增加失败次数,然后调用重试服务进行重试

public void fail(Object messageId) {
    KafkaSpoutMessageId msgId = (KafkaSpoutMessageId)messageId;
    if (!this.emitted.contains(msgId)) {
        LOG.debug("Received fail for tuple this spout is no longer tracking. Partitions may have been reassigned. Ignoring message [{}]", msgId);
    } else {
        msgId.incrementNumFails();
        if (!this.retryService.schedule(msgId)) {
            LOG.debug("Reached maximum number of retries. Message [{}] being marked as acked.", msgId);
            this.ack(msgId);
        } else {
            this.emitted.remove(msgId);
        }

    }
}
posted @ 2018-11-26 16:22  SEC.VIP_网络安全服务  阅读(106)  评论(0编辑  收藏  举报