[LeetCode] 2028. Find Missing Observations

You have observations of n + m 6-sided dice rolls with each face numbered from 1 to 6. n of the observations went missing, and you only have the observations of m rolls. Fortunately, you have also calculated the average value of the n + m rolls.

You are given an integer array rolls of length m where rolls[i] is the value of the ith observation. You are also given the two integers mean and n.

Return an array of length n containing the missing observations such that the average value of the n + m rolls is exactly mean. If there are multiple valid answers, return any of them. If no such array exists, return an empty array.

The average value of a set of k numbers is the sum of the numbers divided by k.

Note that mean is an integer, so the sum of the n + m rolls should be divisible by n + m.

Example 1:
Input: rolls = [3,2,4,3], mean = 4, n = 2
Output: [6,6]
Explanation: The mean of all n + m rolls is (3 + 2 + 4 + 3 + 6 + 6) / 6 = 4.

Example 2:
Input: rolls = [1,5,6], mean = 3, n = 4
Output: [2,3,2,2]
Explanation: The mean of all n + m rolls is (1 + 5 + 6 + 2 + 3 + 2 + 2) / 7 = 3.

Example 3:
Input: rolls = [1,2,3,4], mean = 6, n = 4
Output: []
Explanation: It is impossible for the mean to be 6 no matter what the 4 missing rolls are.

Constraints:
m == rolls.length
1 <= n, m <= 105
1 <= rolls[i], mean <= 6

找出缺失的观测数据。

现有一份 n + m 次投掷单个 六面 骰子的观测数据,骰子的每个面从 1 到 6 编号。观测数据中缺失了 n 份,你手上只拿到剩余 m 次投掷的数据。幸好你有之前计算过的这 n + m 次投掷数据的 平均值 。

给你一个长度为 m 的整数数组 rolls ,其中 rolls[i] 是第 i 次观测的值。同时给你两个整数 mean 和 n 。

返回一个长度为 n 的数组,包含所有缺失的观测数据,且满足这 n + m 次投掷的 平均值 是 mean 。如果存在多组符合要求的答案,只需要返回其中任意一组即可。如果不存在答案,返回一个空数组。

k 个数字的 平均值 为这些数字求和后再除以 k 。

注意 mean 是一个整数,所以 n + m 次投掷的总和需要被 n + m 整除。

思路

这是一道数学题。已知 m 次的投掷数据和 n + m 次投掷数据的平均值,要求返回的是剩下 n 次的投掷数据,如果存在多组符合要求的答案,只需要返回其中任意一组即可。

设n + m 次投掷数据的总和是 totalSum,已知的 m 次投掷数据的总和是 curSum,那么剩下的 n 次投掷数据的总和是 restSum = totalSum - curSum。如果 restSum < n 或 restSum > 6 * n,则不存在答案,返回空数组。

一般的 case 是我们用 restSum / n 得到一个商 quotient 和一个余数 remainder,那么对于最后需要输出的数组 res,每一个位置上的值是 quotient + (i < remainder ? 1 : 0),每一个 quotient 需要 + 1 直到把 remainder 用完为止。

复杂度

时间O(n)
空间O(1)

代码

Java实现

class Solution {
    public int[] missingRolls(int[] rolls, int mean, int n) {
        int m = rolls.length;
		int totalSum = mean * (n + m);
		int curSum = 0;
		for (int roll : rolls) {
			curSum += roll;
		}
		int restSum = totalSum - curSum;
		// corner case
		if (restSum < n || restSum > 6 * n) {
			return new int[0];
		}

		// normal case
		int[] res = new int[n];
		int quotient = restSum / n;
		int remainder = restSum % n;
		for (int i = 0; i < n; i++) {
			res[i] = quotient + (i < remainder ? 1 : 0);
		}
		return res;
    }
}
posted @ 2024-05-27 04:23  CNoodle  阅读(30)  评论(0编辑  收藏  举报