[LeetCode] 1851. Minimum Interval to Include Each Query

You are given a 2D integer array intervals, where intervals[i] = [lefti, righti] describes the ith interval starting at lefti and ending at righti (inclusive). The size of an interval is defined as the number of integers it contains, or more formally righti - lefti + 1.

You are also given an integer array queries. The answer to the jth query is the size of the smallest interval i such that lefti <= queries[j] <= righti. If no such interval exists, the answer is -1.

Return an array containing the answers to the queries.

Example 1:

Input: intervals = [[1,4],[2,4],[3,6],[4,4]], queries = [2,3,4,5]
Output: [3,3,1,4]
Explanation: The queries are processed as follows:
- Query = 2: The interval [2,4] is the smallest interval containing 2. The answer is 4 - 2 + 1 = 3.
- Query = 3: The interval [2,4] is the smallest interval containing 3. The answer is 4 - 2 + 1 = 3.
- Query = 4: The interval [4,4] is the smallest interval containing 4. The answer is 4 - 4 + 1 = 1.
- Query = 5: The interval [3,6] is the smallest interval containing 5. The answer is 6 - 3 + 1 = 4.

Example 2:

Input: intervals = [[2,3],[2,5],[1,8],[20,25]], queries = [2,19,5,22]
Output: [2,-1,4,6]
Explanation: The queries are processed as follows:
- Query = 2: The interval [2,3] is the smallest interval containing 2. The answer is 3 - 2 + 1 = 2.
- Query = 19: None of the intervals contain 19. The answer is -1.
- Query = 5: The interval [2,5] is the smallest interval containing 5. The answer is 5 - 2 + 1 = 4.
- Query = 22: The interval [20,25] is the smallest interval containing 22. The answer is 25 - 20 + 1 = 6.

Constraints:

  • 1 <= intervals.length <= 105
  • 1 <= queries.length <= 105
  • intervals[i].length == 2
  • 1 <= lefti <= righti <= 107
  • 1 <= queries[j] <= 107

包含每个查询的最小区间。

给你一个二维整数数组 intervals ,其中 intervals[i] = [lefti, righti] 表示第 i 个区间开始于 lefti 、结束于 righti(包含两侧取值,闭区间)。区间的 长度 定义为区间中包含的整数数目,更正式地表达是 righti - lefti + 1 。

再给你一个整数数组 queries 。第 j 个查询的答案是满足 lefti <= queries[j] <= righti 的 长度最小区间 i 的长度 。如果不存在这样的区间,那么答案是 -1 。

以数组形式返回对应查询的所有答案。

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/minimum-interval-to-include-each-query
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

思路是扫描线。感觉思路不难但是实现起来有很多细节需要注意。

首先我们要将 intervals 按 start 排序,同时将 queries 和他们各自的 index 包装成一个二维数组且按照 queryVal 排序。再来我们需要一个最小堆存储所有的 intervals,这个堆按 interval 的宽度(end - start)排序。

接下来我们开始遍历 queries,对于每个 queryVal,我们将所有 start <= queryVal 的 interval 都放入最小堆。然后我们从最小堆中弹出所有 end < queryVal 的元素,因为这些 interval 虽然 start 小于 queryVal 但是 end 也小于,等于是这些 intervals 在 queryVal 的左侧,所以要舍弃。此时如果最小堆里还有 intervals,当前的 queryVal 则是能落在这些 intervals 中间的。此时我们再从最小堆中弹出堆顶元素,这个元素就是既能 cover 住 queryVal,且又是宽度最小的那个。

时间O(n * nlogn) - 要处理 n 个 queryVal,对于每个 queryVal,我们都需要将所有 intervals 放入最小堆过滤一遍

空间O(n)

Java实现

 1 class Solution {
 2     public int[] minInterval(int[][] intervals, int[] queries) {
 3         int n = queries.length;
 4         int[][] queriesWithIndex = new int[n][2];
 5         for (int i = 0; i < n; i++) {
 6             queriesWithIndex[i] = new int[] { queries[i], i };
 7         }
 8 
 9         // 区间按start排序
10         Arrays.sort(intervals, (a, b) -> a[0] - b[0]);
11         // query按val排序
12         Arrays.sort(queriesWithIndex, (a, b) -> a[0] - b[0]);
13         // 最小堆,按interval的宽度排序
14         PriorityQueue<int[]> minHeap = new PriorityQueue<>((a, b) -> ((a[1] - a[0]) - (b[1] - b[0])));
15         int[] res = new int[n];
16         int j = 0;
17         for (int i = 0; i < n; i++) {
18             int queryVal = queriesWithIndex[i][0];
19             int queryIndex = queriesWithIndex[i][1];
20             while (j < intervals.length && intervals[j][0] <= queryVal) {
21                 minHeap.offer(intervals[j]);
22                 j++;
23             }
24             while (!minHeap.isEmpty() && minHeap.peek()[1] < queryVal) {
25                 minHeap.poll();
26             }
27             res[queryIndex] = minHeap.isEmpty() ? -1 : (minHeap.peek()[1] - minHeap.peek()[0] + 1);
28         }
29         return res;
30     }
31 }

 

LeetCode 题目总结

posted @ 2023-07-18 04:11  CNoodle  阅读(55)  评论(0编辑  收藏  举报