[LeetCode] 1557. Minimum Number of Vertices to Reach All Nodes
Given a directed acyclic graph, with n
vertices numbered from 0
to n-1
, and an array edges
where edges[i] = [fromi, toi]
represents a directed edge from node fromi
to node toi
.
Find the smallest set of vertices from which all nodes in the graph are reachable. It's guaranteed that a unique solution exists.
Notice that you can return the vertices in any order.
Example 1:
Input: n = 6, edges = [[0,1],[0,2],[2,5],[3,4],[4,2]] Output: [0,3] Explanation: It's not possible to reach all the nodes from a single vertex. From 0 we can reach [0,1,2,5]. From 3 we can reach [3,4,2,5]. So we output [0,3].
Example 2:
Input: n = 5, edges = [[0,1],[2,1],[3,1],[1,4],[2,4]] Output: [0,2,3] Explanation: Notice that vertices 0, 3 and 2 are not reachable from any other node, so we must include them. Also any of these vertices can reach nodes 1 and 4.
Constraints:
2 <= n <= 10^5
1 <= edges.length <= min(10^5, n * (n - 1) / 2)
edges[i].length == 2
0 <= fromi, toi < n
- All pairs
(fromi, toi)
are distinct.
可以到达所有点的最少点数目。
给你一个 有向无环图 , n 个节点编号为 0 到 n-1 ,以及一个边数组 edges ,其中 edges[i] = [fromi, toi] 表示一条从点 fromi 到点 toi 的有向边。
找到最小的点集使得从这些点出发能到达图中所有点。题目保证解存在且唯一。
你可以以任意顺序返回这些节点编号。
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/minimum-number-of-vertices-to-reach-all-nodes
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
这是一道图论的题。题目要求输出一个尽可能小的列表,但是要包含所有的起点,通过这些起点可以最终到达有向图中所有的点。思路是统计图中所有入度为 0 的点,因为入度为 0 的点,是无法通过其他点走到的,所以必须要加入结果集;入度不为 0 的点,说明总有办法从其他某个点最终遍历到他,这些点就无须加入结果集。
时间O(n)
空间O(n) - output
Java实现
1 class Solution { 2 public List<Integer> findSmallestSetOfVertices(int n, List<List<Integer>> edges) { 3 int[] indegree = new int[n]; 4 for (List<Integer> edge : edges) { 5 int to = edge.get(1); 6 indegree[to]++; 7 } 8 9 List<Integer> res = new ArrayList<>(); 10 for (int i = 0; i < n; i++) { 11 if (indegree[i] == 0) { 12 res.add(i); 13 } 14 } 15 return res; 16 } 17 }