[LeetCode] 765. Couples Holding Hands
N couples sit in 2N seats arranged in a row and want to hold hands. We want to know the minimum number of swaps so that every couple is sitting side by side. A swap consists of choosing any two people, then they stand up and switch seats.
The people and seats are represented by an integer from 0
to 2N-1
, the couples are numbered in order, the first couple being (0, 1)
, the second couple being (2, 3)
, and so on with the last couple being (2N-2, 2N-1)
.
The couples' initial seating is given by row[i]
being the value of the person who is initially sitting in the i-th seat.
Example 1:
Input: row = [0, 2, 1, 3] Output: 1 Explanation: We only need to swap the second (row[1]) and third (row[2]) person.
Example 2:
Input: row = [3, 2, 0, 1] Output: 0 Explanation: All couples are already seated side by side.
Note:
len(row)
is even and in the range of[4, 60]
.row
is guaranteed to be a permutation of0...len(row)-1
.
情侣牵手。
N 对情侣坐在连续排列的 2N 个座位上,想要牵到对方的手。 计算最少交换座位的次数,以便每对情侣可以并肩坐在一起。 一次交换可选择任意两人,让他们站起来交换座位。
人和座位用 0 到 2N - 1 的整数表示,情侣们按顺序编号,第一对是 (0, 1),第二对是 (2, 3),以此类推,最后一对是 (2N - 2, 2N - 1)。
这些情侣的初始座位 row[i] 是由最初始坐在第 i 个座位上的人决定的。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/couples-holding-hands
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
这个题有两种思路,一种是贪心,一种是并查集 union find。我这里先给出贪心的思路。同时建议可以先做一下41题,思路类似。
这个题贪心的做法跟桶排序类似,还是试着将每个坐标上放应该放的数字。过一下第一个例子,[0, 2, 1, 3]。第一个数字是0,那么第二个数字的判断就是看他是否是第一个数字0的配偶。判断配偶的方式是看当前这个nums[i + 1]是不是等于nums[i] ^ 1。这一点不容易想到。因为配偶的座位排序要求不是非常严格,比如0和1,既可以01这样坐,也可以10这样坐。但是位运算的这个特点就可以无视0和1的顺序,来判断两个相邻的数字是否互为配偶。如果想不到这个位运算的办法,那么就只能通过先判断当前index上数字的奇偶性来判断index + 1那个位置上的数字是否是配偶。贪心的做法为什么对呢?我这里引用一个discussion给的例子,并且稍加解释。
The proof is easy. Consider a simple example: 7 1 4 6 2 3 0 5. At first step we have two choice to match the first couple: swap 7 with 0, or swap 1 with 6. Then we get 0 1 4 6 2 3 7 5 or 7 6 4 1 2 3 0 5. Pay attention that the first couple doesn't count any more. For the later part it is composed of 4 X 2 3 Y 5 (X=6 Y=7 or X=1 Y=0). Since different couples are unrelated, we don't care X Y is 6 7 pair or 0 1 pair. They are equivalent! Thus it means our choice doesn't count.
Therefore, just follow the distinction and you will get it right!
首先,input是[7 1 4 6 2 3 0 5]。然后第一次swap可以swap7和0,或者swap1和6。第一次swap完了之后,数组长这样,
4 X 2 3 Y 5 (X=6 Y=7 or X=1 Y=0)
后面的swap只跟XY有关,跟已经被swap好的第一组数字无关了。所以也就无所谓先swap哪些数字了。如下代码其实是没有swap的过程的,这里有几点需要注意
- for 循环每次走两步
- for 循环每一次实际判断的是对于当前位置 i 上的数字,他的右边 i + 1 位置上是否是他的配偶,如果是则跳过;如果不是则从 pos 数组中找到他配偶的下标 pairPos,然后把当前 i + 1 位置上那个人直接覆盖过去。这个中间不涉及把配偶交换到 i + 1 位置上来的动作。最后对于 row 数组和 pos 数组,我们更新 nextPerson 新的下标。
时间O(n)
空间O(n)
Java实现
1 class Solution { 2 public int minSwapsCouples(int[] row) { 3 int count = 0; 4 int[] pos = new int[row.length]; 5 for (int i = 0; i < pos.length; i++) { 6 pos[row[i]] = i; //每个人对应的位置 7 } 8 9 for (int i = 0; i < pos.length; i += 2) { 10 // i号位置的情侣应该是谁 11 int pairPerson = (row[i] & 1) == 1 ? row[i] - 1 : row[i] + 1; 12 // 右边是情侣,直接继续处理下一个 13 if (row[i + 1] == pairPerson) { 14 continue; 15 } 16 int nextPerson = row[i + 1]; // 右边不是情侣,得到右边的人是谁 17 int pairPos = pos[pairPerson]; // 得到情侣的位置在哪 18 row[pairPos] = nextPerson; // 交换后,情侣位置坐上了原本右边的人nextPerson 19 pos[nextPerson] = pairPos; // 交换后,右边人nextPerson的位置发生了改变,记录下来。 20 count++; 21 } 22 return count; 23 } 24 }
相关题目