[LeetCode] 990. Satisfiability of Equality Equations
Given an array equations of strings that represent relationships between variables, each string equations[i]
has length 4
and takes one of two different forms: "a==b"
or "a!=b"
. Here, a
and b
are lowercase letters (not necessarily different) that represent one-letter variable names.
Return true
if and only if it is possible to assign integers to variable names so as to satisfy all the given equations.
Example 1:
Input: ["a==b","b!=a"]
Output: false
Explanation: If we assign say, a = 1 and b = 1, then the first equation is satisfied, but not the second. There is no way to assign the variables to satisfy both equations.
Example 2:
Input: ["b==a","a==b"]
Output: true
Explanation: We could assign a = 1 and b = 1 to satisfy both equations.
Example 3:
Input: ["a==b","b==c","a==c"]
Output: true
Example 4:
Input: ["a==b","b!=c","c==a"]
Output: false
Example 5:
Input: ["c==c","b==d","x!=z"]
Output: true
Note:
1 <= equations.length <= 500
equations[i].length == 4
equations[i][0]
andequations[i][3]
are lowercase lettersequations[i][1]
is either'='
or'!'
equations[i][2]
is'='
等式方程的可满足性。
给定一个由表示变量之间关系的字符串方程组成的数组,每个字符串方程 equations[i] 的长度为 4,并采用两种不同的形式之一:"a==b" 或 "a!=b"。在这里,a 和 b 是小写字母(不一定不同),表示单字母变量名。
只有当可以将整数分配给变量名,以便满足所有给定的方程时才返回 true,否则返回 false。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/satisfiability-of-equality-equations
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路是并查集union find。如果中间是等号,说明等号两边的内容应该是同组的,反之则是不同组的。先扫描是等号的,将同组的东西都组合起来;然后扫描不等号的两边,看看是否有跟已经union好的内容有矛盾的地方。
时间O(nlogn)
空间O(n)
Java实现
1 class Solution { 2 public boolean equationsPossible(String[] equations) { 3 UF uf = new UF(256); 4 for (String e : equations) { 5 int letter1 = e.charAt(0) - 'a'; 6 int letter2 = e.charAt(3) - 'a'; 7 if (e.charAt(1) == '=') { 8 uf.union(letter1, letter2); 9 } 10 } 11 12 for (String e : equations) { 13 if (e.charAt(1) == '!') { 14 int letter1 = e.charAt(0) - 'a'; 15 int letter2 = e.charAt(3) - 'a'; 16 if (uf.find(letter1) == uf.find(letter2)) { 17 return false; 18 } 19 } 20 } 21 return true; 22 } 23 } 24 25 class UF { 26 int[] parent; 27 int count; 28 29 public UF(int n) { 30 parent = new int[n]; 31 for (int i = 0; i < n; i++) { 32 parent[i] = i; 33 } 34 count = n; 35 } 36 37 public int find(int i) { 38 if (i == parent[i]) { 39 return i; 40 } 41 return parent[i] = find(parent[i]); 42 } 43 44 public void union(int a, int b) { 45 int aRoot = find(a); 46 int bRoot = find(b); 47 if (aRoot != bRoot) { 48 parent[aRoot] = bRoot; 49 count--; 50 } 51 } 52 }