[LeetCode] 85. Maximal Rectangle
Given a rows x cols binary matrix filled with 0's and 1's, find the largest rectangle containing only 1's and return its area.
Example 1:
Input: matrix = [
["1","0","1","0","0"],
["1","0","1","1","1"],
["1","1","1","1","1"],
["1","0","0","1","0"]
]
Output: 6
Explanation: The maximal rectangle is shown in the above picture.
Example 2:
Input: matrix = [["0"]]
Output: 0
Example 3:
Input: matrix = [["1"]]
Output: 1
Constraints:
rows == matrix.length
cols == matrix[i].length
1 <= row, cols <= 200
matrix[i][j] is '0' or '1'.
最大矩形。
给定一个仅包含 0 和 1 、大小为 rows x cols 的二维二进制矩阵,找出只包含 1 的最大矩形,并返回其面积。
思路
题意是给一个二维矩阵,求二维矩阵里面由1组成的最大矩形的面积是什么。这个题有DP和单调栈两种做法,我这里给出单调栈的解法。思路跟84题类似,你可以把每一行想象成84题的bars,跑一下第一个例子,比如我们从最后一行往上遍历,最后一行是
[1, 0, 0, 1, 0]
按照84题的思路,能组成的最大的矩形面积是 1。
接着把倒数第二行的数字叠加进来,叠加的思路是,若下一行相同位置上为0,则当前位置是1;若下一行相同位置上不为0,则当前位置 + 1。
[1, 1, 1, 1, 1]
[1, 0, 0, 1, 0]
得到
[2, 1, 1, 2, 1]
从而得到最大矩形面积是2。以此类推可以得到这个4*5的矩阵里面最大的矩形的面积。
复杂度
时间O(mn^2)
空间O(n)
代码
Java实现
class Solution {
public int maximalRectangle(char[][] matrix) {
int row = matrix.length;
int col = matrix[0].length;
int[] heights = new int[col];
int max = 0;
for (int i = 0; i < row; i++) {
for (int j = 0; j < col; j++) {
if (matrix[i][j] == '1') {
heights[j]++;
} else {
heights[j] = 0;
}
}
int area = helper(heights);
max = Math.max(max, area);
}
return max;
}
private int helper(int[] heights) {
Deque<Integer> stack = new ArrayDeque<>();
int n = heights.length;
int res = 0;
for (int i = 0; i <= n; i++) {
int h = i == n ? 0 : heights[i];
while (!stack.isEmpty() && h < heights[stack.peekLast()]) {
int height = heights[stack.pollLast()];
int start = stack.isEmpty() ? -1 : stack.peekLast();
int area = height * (i - start - 1);
res = Math.max(res, area);
}
stack.offerLast(i);
}
return res;
}
}
JavaScript实现
/**
* @param {character[][]} matrix
* @return {number}
*/
var maximalRectangle = function(matrix) {
// corner case
if (matrix == null || matrix.length == 0) {
return 0;
}
// normal case
let res = 0;
let row = matrix.length;
let col = matrix[0].length;
let heights = new Array(col).fill(0);
for (let i = 0; i < row; i++) {
for (let j = 0; j < col; j++) {
if (matrix[i][j] == '1') {
heights[j]++;
} else {
heights[j] = 0;
}
}
let area = helper(heights);
res = Math.max(res, area);
}
return res;
};
var helper = function(heights) {
// corner case
if (heights == null || heights.length == 0) {
return 0;
}
// normal case
let stack = [];
let res = 0;
for (let i = 0; i <= heights.length; i++) {
let h = i == heights.length ? 0 : heights[i];
while (stack.length && h < heights[stack[stack.length - 1]]) {
let height = heights[stack.pop()];
let start = !stack.length ? -1 : stack[stack.length - 1];
let area = height * (i - start - 1);
res = Math.max(res, area);
}
stack.push(i);
}
return res;
};
相关题目
84. Largest Rectangle in Histogram
85. Maximal Rectangle
221. Maximal Square
1277. Count Square Submatrices with All Ones
1727. Largest Submatrix With Rearrangements