[LeetCode] 63. Unique Paths II
You are given an m x n
integer array grid
. There is a robot initially located at the top-left corner (i.e., grid[0][0]
). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]
). The robot can only move either down or right at any point in time.
An obstacle and space are marked as 1
or 0
respectively in grid
. A path that the robot takes cannot include any square that is an obstacle.
Return the number of possible unique paths that the robot can take to reach the bottom-right corner.
The testcases are generated so that the answer will be less than or equal to 2 * 109
.
Example 1:
Input: obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]] Output: 2 Explanation: There is one obstacle in the middle of the 3x3 grid above. There are two ways to reach the bottom-right corner: 1. Right -> Right -> Down -> Down 2. Down -> Down -> Right -> Right
Example 2:
Input: obstacleGrid = [[0,1],[0,0]] Output: 1
Constraints:
m == obstacleGrid.length
n == obstacleGrid[i].length
1 <= m, n <= 100
obstacleGrid[i][j]
is0
or1
.
不同路径 II。
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1 和 0 来表示。
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/unique-paths-ii
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
题意跟版本一一样,唯一的不同点在于路径上会有障碍物。依然是返回到底有多少不同的路径能从左上角走到右下角。我还是提供自上而下和自下而上两种解法。
DP自上而下
时间O(mn)
空间O(mn)
Java实现
1 class Solution { 2 int[][] memo; 3 4 public int uniquePathsWithObstacles(int[][] obstacleGrid) { 5 int m = obstacleGrid.length; 6 int n = obstacleGrid[0].length; 7 memo = new int[m][n]; 8 return dp(obstacleGrid, m - 1, n - 1); 9 } 10 11 private int dp(int[][] grid, int i, int j) { 12 // base case 13 // 越界或者遇到障碍物,直接返回0 14 if (i < 0 || j < 0 || grid[i][j] == 1) { 15 return 0; 16 } 17 if (i == 0 && j == 0) { 18 return 1; 19 } 20 if (memo[i][j] > 0) { 21 return memo[i][j]; 22 } 23 memo[i][j] = dp(grid, i - 1, j) + dp(grid, i, j - 1); 24 return memo[i][j]; 25 } 26 } 27 28 // dp自上而下
DP自下而上
时间O(mn)
空间O(mn)
Java实现
1 class Solution { 2 public int uniquePathsWithObstacles(int[][] obstacleGrid) { 3 int m = obstacleGrid.length; 4 int n = obstacleGrid[0].length; 5 int[][] dp = new int[m][n]; 6 for (int i = 0; i < m && obstacleGrid[i][0] == 0; i++) { 7 dp[i][0] = 1; 8 } 9 for (int j = 0; j < n && obstacleGrid[0][j] == 0; j++) { 10 dp[0][j] = 1; 11 } 12 13 for (int i = 1; i < m; i++) { 14 for (int j = 1; j < n; j++) { 15 if (obstacleGrid[i][j] == 0) { 16 dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; 17 } 18 } 19 } 20 return dp[m - 1][n - 1]; 21 } 22 } 23 24 // dp自下而上
相关题目