[LeetCode] 509. Fibonacci Number

The Fibonacci numbers, commonly denoted F(n) form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0 and 1. That is,

F(0) = 0,   F(1) = 1
F(N) = F(N - 1) + F(N - 2), for N > 1.

Given N, calculate F(N).

Example 1:

Input: 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.

Example 2:

Input: 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.

Example 3:

Input: 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.

Note:

0 ≤ N ≤ 30.

斐波那契数列。

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给你 n ,请计算 F(n) 。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/fibonacci-number
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

题意很简单,求出斐波那契数列里面第 N 个数。这个题有好几个思路,分别是迭代,递归和动态规划。虽然是个基础题但是涉及到的思路还是比较全面的,故而都列出来。

迭代

时间O(n)

空间O(1)

 1 /**
 2  * @param {number} N
 3  * @return {number}
 4  */
 5 var fib = function(N) {
 6     if (N <= 1) {
 7         return N;
 8     }
 9     var a = 0;
10     var b = 1;
11     while (N > 1) {
12         var sum = a + b;
13         a = b;
14         b = sum;
15         N--;
16     }
17     return b;
18 };

 

递归

时间O(n)

空间O(n)

 1 /**
 2  * @param {number} N
 3  * @return {number}
 4  */
 5 var fib = function(N) {
 6     if (N <= 1) {
 7         return N;
 8     } else {
 9         return fib(N - 1) + fib(N - 2);
10     }
11 };

 

动态规划 - 自底向上

为什么这种做法叫自底向上呢?因为我们是从第一个斐波那契数一个个往后推导的。这样从更小的,已知的的问题的答案推导到更大的未知的答案的思想是自底向上。

时间O(n)

空间O(n)

JavaScript实现

 1 /**
 2  * @param {number} N
 3  * @return {number}
 4  */
 5 var fib = function(N) {
 6     if (N <= 1) {
 7         return N;
 8     }
 9     let dp = [N + 1];
10     dp[0] = 0;
11     dp[1] = 1;
12     for (let i = 2; i <= N; i++) {
13         dp[i] = dp[i - 2] + dp[i - 1];
14     }
15     return dp[N];
16 };

 

Java实现

 1 class Solution {
 2     public int fib(int N) {
 3         if (N <= 1) {
 4             return N;
 5         }
 6         int[] dp = new int[N + 1];
 7         dp[0] = 0;
 8         dp[1] = 1;
 9         for (int i = 2; i <= N; i++) {
10             dp[i] = dp[i - 2] + dp[i - 1];
11         }
12         return dp[N];
13     }
14 }

 

动态规划 - 自上而下

为什么这种做法叫自上而下呢?是因为我们为了解决一个规模更大的问题,试图去看能否找到一个规模更小的问题的答案,从而推导出来更大的问题的答案的。这种做法的背后实际是一棵二叉树,参见这个截图

为了得到 f(20),我们递归去找规模更小的子问题 f(19) 和 f(18)。

时间O(n)

空间O(n)

Java实现

 1 class Solution {
 2     public int fib(int n) {
 3         int[] memo = new int[n + 1];
 4         return helper(memo, n);
 5     }
 6 
 7     private int helper(int[] memo, int n) {
 8         if (n == 0 || n == 1) {
 9             return n;
10         }
11         if (memo[n] != 0) {
12             return memo[n];
13         }
14         memo[n] = helper(memo, n - 2) + helper(memo, n - 1);
15         return memo[n];
16     }
17 }

 

相关题目

70. Climbing Stairs

509. Fibonacci Number

746. Min Cost Climbing Stairs

1137. N-th Tribonacci Number

LeetCode 题目总结

posted @ 2020-01-22 05:51  CNoodle  阅读(111)  评论(0编辑  收藏  举报