[LeetCode] 20. Valid Parentheses
Given a string s containing just the characters '(', ')', '{', '}', '[' and ']', determine if the input string is valid.
An input string is valid if:
Open brackets must be closed by the same type of brackets.
Open brackets must be closed in the correct order.
Every close bracket has a corresponding open bracket of the same type.
Example 1:
Input: s = "()"
Output: true
Example 2:
Input: s = "()[]{}"
Output: true
Example 3:
Input: s = "(]"
Output: false
Constraints:
1 <= s.length <= 104
s consists of parentheses only '()[]{}'.
有效的括号。
给定一个只包括 '(',')','{','}','[',']' 的字符串 s ,判断字符串是否有效。
有效字符串需满足:
左括号必须用相同类型的右括号闭合。
左括号必须以正确的顺序闭合。
来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/valid-parentheses
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
思路
思路是用 stack 做。如果看到左半边括号就无条件压入栈;如果看到右半边括号,判断栈是不是为空,为空就报错;栈不为空再判断目前栈顶元素是不是相对应的左半边,若不是也报错。
复杂度
时间O(n)
空间O(n)
代码
Java实现
class Solution {
public boolean isValid(String s) {
Deque<Character> stack = new ArrayDeque<>();
for (char c : s.toCharArray()) {
if (c == '(' || c == '[' || c == '{') {
stack.push(c);
}
if (c == ')') {
if (stack.isEmpty() || stack.pop() != '(') return false;
}
if (c == ']') {
if (stack.isEmpty() || stack.pop() != '[') return false;
}
if (c == '}') {
if (stack.isEmpty() || stack.pop() != '{') return false;
}
}
return stack.isEmpty();
}
}
JavaScript实现
/**
* @param {string} s
* @return {boolean}
*/
var isValid = function(s) {
let stack = [];
for (let i = 0; i < s.length; i++) {
if (s[i] === '(' || s[i] === '[' || s[i] === '{') {
stack.push(s[i]);
}
if (s[i] === ')') {
if (stack.length === 0 || stack.pop() != '(') return false;
}
if (s[i] === ']') {
if (stack.length === 0 || stack.pop() != '[') return false;
}
if (s[i] === '}') {
if (stack.length === 0 || stack.pop() != '{') return false;
}
}
return stack.length === 0 ? true : false;
};
相关题目
20. Valid Parentheses
678. Valid Parenthesis String
1111. Maximum Nesting Depth of Two Valid Parentheses Strings
921. Minimum Add to Make Parentheses Valid
1541. Minimum Insertions to Balance a Parentheses String
1003. Check If Word Is Valid After Substitutions