递归与八皇后问题
递归与八皇后问题
什么叫递归
其实是这样的
假设我们现在都不知道什么是递归,我们自然想到打开浏览器:输入到谷歌的网页,点击搜索递归,然后在为维基百科中了解到了递归的基本定义。在了解到了递归实际上是和栈有关的时候,你又蒙圈了,什么是栈呢?数据结构没学清楚,此时的你只能又打开谷歌,搜索什么是栈。接下来你依次了解了内存/操作系统。在你基本了解好知识之后,你通过操作系统了解了内存,通过内存了解了栈,通过栈了解了什么是递归这下你恍然大悟!原来这就是递归啊!
递归需要遵守的重要规则
- 执行一个方法时,就创建一个新的受保护的独立空间(栈空间)
- 方法的局部变量是独立的,不会相互影响, 比如n变量
- 3. 如果方法中使用的是引用类型变量(比如数组),就会共享该引用类型的数据.
- 递归必须向退出递归的条件逼近,否则就是无限递归,出现StackOverflowError,死龟了:)
- 当一个方法执行完毕,或者遇到return,就会返回,遵守谁调用,就将结果返回给谁,同时当方法执行完毕或者返回时,该方法也就执行完毕。
==2返回 false 不理解
else { // 如果map[i][j] != 0 , 可能是 1, 2, 3
//1 撞墙 3 死路 可以理解 但是2 代表别人走过的 也false就代表换个路走(按规则会往右走) 这是为什么呢 为什么要换个路呢
return false;
按上右下左的策略
看这个 2 2 的上面走过了所以不用走 再向右 再向下
就能理解为什么==2要返回false了
代码
package com.atguigu.recursion;
public class MiGong {
public static void main(String[] args) {
// 先创建一个二维数组,模拟迷宫
// 地图
int[][] map = new int[8][7];
// 使用1 表示墙
// 上下全部置为1 墙
for (int i = 0; i < 7; i++) {
map[0][i] = 1;
map[7][i] = 1;
}
// 左右全部置为1 墙
for (int i = 0; i < 8; i++) {
map[i][0] = 1;
map[i][6] = 1;
}
//设置挡板, 1 表示
map[3][1] = 1;
map[3][2] = 1;
// map[1][2] = 1;
// map[2][2] = 1;
// 输出地图
System.out.println("地图的情况");
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 7; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
//使用递归回溯给小球找路
//setWay(map, 1, 1);
setWay2(map, 1, 1);
//输出新的地图, 小球走过,并标识过的递归
System.out.println("小球走过,并标识过的 地图的情况");
for (int i = 0; i < 8; i++) {
for (int j = 0; j < 7; j++) {
System.out.print(map[i][j] + " ");
}
System.out.println();
}
}
//使用递归回溯来给小球找路
//说明
//1. map 表示地图
//2. i,j 表示从地图的哪个位置开始出发 (1,1)
//3. 如果小球能到 map[6][5] 位置,则说明通路找到.
//4. 约定: 当map[i][j] 为 0 表示该点没有走过 当为 1 表示墙 ; 2 表示通路可以走 ; 3 表示该点已经走过,但是走不通
//5. 在走迷宫时,需要确定一个策略(方法) 下->右->上->左 , 如果该点走不通,再回溯
/**
*
* @param map 表示地图
* @param i 从哪个位置开始找
* @param j
* @return 如果找到通路,就返回true, 否则返回false
*/
public static boolean setWay(int[][] map, int i, int j) {
if(map[6][5] == 2) { // 通路已经找到ok
return true;
} else {
if(map[i][j] == 0) { //如果当前这个点还没有走过
//按照策略 下->右->上->左 走
map[i][j] = 2; // 假定该点是可以走通.
if(setWay(map, i+1, j)) {//向下走
return true;
} else if (setWay(map, i, j+1)) { //向右走
return true;
} else if (setWay(map, i-1, j)) { //向上
return true;
} else if (setWay(map, i, j-1)){ // 向左走
return true;
} else {
//说明该点是走不通,是死路
map[i][j] = 3;
return false;
}
} else { // 如果map[i][j] != 0 , 可能是 1, 2, 3
//1 撞墙 3 死路 可以理解 但是2 这这个策略下看不到 其他策略可以看到作用
return false;
}
}
}
//修改找路的策略,改成 上->右->下->左
public static boolean setWay2(int[][] map, int i, int j) {
if(map[6][5] == 2) { // 通路已经找到ok
return true;
} else {
if(map[i][j] == 0) { //如果当前这个点还没有走过
//按照策略 上->右->下->左
map[i][j] = 2; // 假定该点是可以走通.
if(setWay2(map, i-1, j)) {//向上走
return true;
} else if (setWay2(map, i, j+1)) { //向右走
return true;
} else if (setWay2(map, i+1, j)) { //向下
return true;
} else if (setWay2(map, i, j-1)){ // 向左走
return true;
} else {
//说明该点是走不通,是死路
map[i][j] = 3;
return false;
}
} else { // 如果map[i][j] != 0 , 可能是 1, 2, 3
return false;
}
}
}
}
八皇后问题
这是成立条件
任意两个皇后都不能处于同一行、同一列或同一斜线上
分析图
他这个说明 比较慒 特别是arr[i] = val , val 表示第i+1个皇后,放在第i+1行的第val+1列 这句话
这句话不懂 就 每次记着吧 是找判断两个是不是斜线的
Math.abs(n-i) == Math.abs(array[n] - array[i]) 这个算法就是这样 至于为什么....
以上图为例
a[i]的值是0 因为a[i]={0}取首地址的值 是0
i是0 第1个皇后
a[n]的值是1 因为a[n]={1}取首地址的值 是1
n是1 是第2个皇后
Ma(2-1)== ma(a[2]-a[1])
1==1-0
以上图为例
a[i]的值是3 因为a[i]={3}取首地址的值 是3
i是2 第3个皇后 a[2]=3
a[n]的值是4 因为a[n]={4}取首地址的值 是4
n是3 是第4个皇后 a[3]=4
Ma(3-2)==ma(arr[4]-arr[2])
1== 4-3
第八行 如果每个都不行 会递归到 第七层的 第七层改变一下位置 第八层全部换一次位置 以此类推
完整代码
package com.atguigu.recursion;
public class Queue8 {
//定义一个max表示共有多少个皇后
int max = 8;
//定义数组array, 保存皇后放置位置的结果,比如 arr = {0 , 4, 7, 5, 2, 6, 1, 3}
int[] array = new int[max];
static int count = 0;
static int judgeCount = 0;
public static void main(String[] args) {
//测试一把 , 8皇后是否正确
Queue8 queue8 = new Queue8();
queue8.check(0);
System.out.printf("一共有%d解法", count);
System.out.printf("一共判断冲突的次数%d次", judgeCount); // 1.5w
}
//编写一个方法,放置第n个皇后
//特别注意: check 是 每一次递归时,进入到check中都有 for(int i = 0; i < max; i++),因此会有回溯
private void check(int n) {
if(n == max) { //n = 8 , 其实8个皇后就既然放好
print();
return;
}
//依次放入皇后,并判断是否冲突
for(int i = 0; i < max; i++) {
//先把当前这个皇后 n , 放到该行的第1列
array[n] = i;
//判断当放置第n个皇后到i列时,是否冲突
if(judge(n)) { // 不冲突
//接着放n+1个皇后,即开始递归
check(n+1); // 如果从七层 跳到六层 那么六层的每改一个 又会递归到7层里面去
}
//如果冲突,就继续执行 array[n] = i; 即将第n个皇后,放置在本行得 后移的一个位置
}
}
//查看当我们放置第n个皇后, 就去检测该皇后是否和前面已经摆放的皇后冲突
/**
*
* @param n 表示第n个皇后
* @return
*/
private boolean judge(int n) {
judgeCount++;
for(int i = 0; i < n; i++) {
// 说明
//1. array[i] == array[n] 表示判断 第n个皇后是否和前面的n-1个皇后在同一列
//i=1 n=2
//因为是用一维数组进行的模拟 所以arr[0]=2 就表示第一个皇后在第三列
//arr[n]={1,0,2,5,…} n=1时 值是0 就代表第二个皇后在第一列 皇后的下标是 [1][0]
//如 array[1] ={1,0,0,5,0…} array[2] ={1,0,0,0,0…} 他们两个取的是首地址 也就是都是1
//所以説在同一列
//2. Math.abs(n-i) == Math.abs(array[n] - array[i]) 表示判断第n个皇后是否和第i皇后是否在同一斜线
//不懂 只能随便带入斜线的值 进行比较
// n = 1 放置第 2列 1 n = 1 array[1] = 1
// Math.abs(1-0) == 1 Math.abs(array[n] - array[i]) = Math.abs(1-0) = 1
//3. 判断是否在同一行, 没有必要,n 每次都在递增
//判断在同一列或在同一条斜线上就返回false 否则返回true
if(array[i] == array[n] || Math.abs(n-i) == Math.abs(array[n] - array[i]) ) {
return false;
}
}
return true;
}
//写一个方法,可以将皇后摆放的位置输出
private void print() {
count++;
for (int i = 0; i < array.length; i++) {
System.out.print(array[i] + " ");
}
System.out.println();
}
}