常用排序算法的Python实现
冒泡排序
算法思想:
对于一组需要排序的数据,对于相邻的两个数进行比较,使较大(或者较小)的数一直向后推,经过多层排序之后,使整个序列是有序的。
算法实现:
def bubble_sort(L):
length = len(L)
if length == 0 or length == 1:
return L
for i in range(length):
for j in range(length-i-1):
if L[j] > L[j+1]:
temp = L[j]
L[j] = L[j+1]
L[j+1] = temp
return L
print(bubble_sort(data))
算法的实现使用了两层for循环,其中对于外层for循环来说,第一次for循环,最大的数被推到最后面,第二次for循环,次大的数被推到次后面...依次类推,而内层for循环的作用就是实现将当前层次的最大数找出来,向后沉。
复杂度:
- 时间复杂度
平均情况O(n^2), 最好情况O(n), 最坏情况O(n^2) - 空间复杂度
O(1) - 稳定性
不稳定
快速排序
算法思想:
任意设置一个基准元素,一般是第一个或者最后一个,将序列以该基准元素为基准,分割成比他小的一部分和比他大的一部分,此时,该基准元素所在的位置就是排序终了之后的准确位置,在对左右两边的序列继续执行同样的操作,直整个个序列有序。
算法实现:
def quick_sort(lists, left, right):
if left >= right:
return lists
key = lists[left] # 用作基准
low = left
high = right
while left < right:
while left < right and lists[right] >= key:
right -= 1
lists[left] = lists[right]
while left < right and lists[left] <= key:
left += 1
lists[right] = lists[left]
lists[right] = key
quick_sort(lists, low, left - 1)
quick_sort(lists, left + 1, high)
return lists
print(quick_sort(data, 0, len(data)-1))
内层的while循环中,以key为基准,从序列的右边找出比key值小的元素,放在key的左边去,再从key的左边找出比key值大的元素,放在key的右边,此时正好填补了放到左边的的那个空位,多次循环,直到序列有序。
复杂度:
- 时间复杂度
平均情况O(nlog2n), 最好情况O(nlog2n), 最坏情况O(n^2) - 空间复杂度
O(nlog2n) - 稳定性
不稳定
选择排序
算法思想:
在需要排序的一组数中,选出最小(或者最大)的一个数与第一个位置的数交换,然后在剩下的数中在找到最小(或者最大)的数与第二个位置的数交换,一次类推,直到倒数第二个数与倒数第一个数交换完成为止。
算法实现:
def select_sort(L):
length = len(L)
if length == 0 or length == 1:
return L
def _min(s):
'''
实现从后面的值中找到最小值的索引
'''
min = s
for i in range(s, length):
if L[i] < L[min]:
min = i
return min
for i in range(length):
min = _min(i)
if i != min:
temp = L[min]
L[min] = L[i]
L[i] = temp
return L
print(select_sort(data))
每一次循环,都将该次循环的i作为基准,从i后面的数中通过_min()函数来找到后面数据最小值的索引,在for循环的循环体内交换位置,目的是将小值放到前面去。这样,每一次循环,数中最前面的一部分数据是从小到大排序的,直到最后,所有的数据都是有序的为止。
复杂度:
- 时间复杂度
平均情况O(n^2), 最好情况O(n^2), 最坏情况O(n^2) - 空间复杂度
O(1) - 稳定性
不稳定
归并排序
算法思想:
主题思想是将两个有序表河滨更成为一个新的有序表,将待排序序列分位若干个子序列,每个子序列是有序的,然后在将其合并为一个整体,使用递归的思想。
算法实现:
def merge(left, right):
i, j = 0, 0
result = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result += left[i:]
result += right[j:]
return result
def merge_sort(lists):
# 归并排序
if len(lists) <= 1:
return lists
num = int(len(lists) / 2)
left = merge_sort(lists[:num])
right = merge_sort(lists[num:])
return merge(left, right)
print(merge_sort(data))
将一个序列一直对半拆分,分为若干个子序列,直到该子序列只有一个元素为止,然后将其合并。因此主要的问题就变成了如何将两个有序序列合并,这里新建一个空序列,遍历比较两个序列,将较小的元素放在新的序列中,直到某一个序列为空,此时很可能另外的一个序列非空,因此需要将剩余的已经有序的元素一次性添加到新建的序列中。
复杂度:
- 时间复杂度
平均情况O(nlog2n), 最好情况O(nlog2n), 最坏情况O(nlog2n) - 空间复杂度
O(n) - 稳定性
稳定
插入排序
算法思想:
将序列的第一个元素当做已经排序好的序列,然后从后面的第二个元素开始,逐个元素进行插入,直到整个序列有序为止。
算法实现:
def insert_sort(L):
length = len(L)
if length==0 or length==1:
return L
for i in range(1,length):
value = L[i]
j = i-1
while j>=0 and L[j]>value:
L[j+1] = L[j]
j-=1
L[j+1] = value
return L
print(insert_sort(data))
对于for循环来说,第一次循环结束,整个序列的第一个元素是有序的,第二次循环,前面两个元素是有序的,第三次for循环,前面三个元素是有序的...对于while循环来说,只要索引为i的前面某个元素比我们设置的“哨兵”value的值大,就把它放在后面去,直到前面所有的元素均比value小,这时候本次排序结束,本次排序的结果依然是有序的,因为上一次的结果是有序的,我们本次排序只是将一个新的值加入进去,并没有破坏之前的结构,因此将其称之为“插入排序”。
复杂度:
- 时间复杂度
平均情况O(n^2), 最好情况O(n), 最坏情况O(n^2) - 空间复杂度
O(1) - 稳定性
稳定
希尔排序
算法思想:
希尔排序是对直接插入排序的改进版本,又称为缩小增量排序,将整个序列分割成若干个子序列,分别进行直接插入排序,待各个子序列基本语序后,在对全体进行直接插入排序。
算法实现:
def shell_sort(lists):
count=len(lists)
step=2
group=int(count/step)
while group>0:
for i in range(group):
j=i+group
while j<count:
key=lists[j]
k=j-group
while k>=0:
if lists[k]>key:
lists[k+group]=lists[k]
lists[k]=key
k=k-group
j=j+group
group=int(group/step)
return lists
print(shell_sort(data))