Elastic Stack 笔记(七)Elasticsearch5.6 聚合分析

博客地址:http://www.moonxy.com

一、前言

Elasticsearch 是一个分布式的全文搜索引擎,索引和搜索是 Elasticsarch 的基本功能。同时,Elasticsearch 的聚合(Aggregations)功能也时分强大,允许在数据上做复杂的分析统计。ES 提供的聚合分析功能主要有指标聚合、桶聚合、管道聚合和矩阵聚合。需要主要掌握的是前两个,即指标聚合和桶聚合。

聚合分析的官方文档:Aggregations

二、聚合分析

2.1 指标聚合

指标聚合官网文档:Metric

指标聚合中主要包括 min、max、sum、avg、stats、extended_stats、value_count 等聚合,相当于 SQL 中的聚合函数。

指标聚合中包括如下聚合:

Aggregations that keep track and compute metrics over a set of documents.

在一组文档中跟踪和计算度量的聚合。如下以 max 聚合为例:

Max Aggregation

max 聚合官网文档:Max Aggregation

max 聚合用于最大值统计,与 SQL 中的聚合函数 max() 的作用类似,其中 "max_price" 为自定义的聚合名称。

##Max Aggregation
GET books/_search
{
  "size": 0, 
  "aggs": {
    "max_price": {
      "max":  {
        "field": "price"
      }
    }
  }
}

返回结果如下:

{
  "took": 6,
  "timed_out": false,
  "_shards": {
    "total": 3,
    "successful": 3,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 5,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "max_price": {
      "value": 81.4
    }
  }
}

Cardinality Aggregation

基数统计聚合官网文档:Cardinality Aggregation

Cardinality Aggregation 用于基数查询,其作用是先执行类似 SQL 中的 distinct 操作,去掉集合中的重复项,然后统计排重后的集合长度。

##Cardinality Aggregation
GET books/_search
{
  "size": 0, 
  "aggs": {
    "all_language": {
      "cardinality":  {
        "field": "language"
      }
    }
  }
}

返回结果如下:

{
  "took": 41,
  "timed_out": false,
  "_shards": {
    "total": 3,
    "successful": 3,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 5,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "all_language": {
      "value": 3
    }
  }
}

Stats Aggregation

基本统计聚合官网文档:Stats Aggregation

Stats Aggregation 用于基本统计,会一次返回 count、max、min、avg 和 sum 这 5 个指标。如下:

##Stats Aggregation
GET books/_search
{
  "size": 0, 
  "aggs": {
    "stats_pirce": {
      "stats":  {
        "field": "price"
      }
    }
  }
}

返回结果如下:

{
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 3,
    "successful": 3,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 5,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "stats_pirce": {
      "count": 5,
      "min": 46.5,
      "max": 81.4,
      "avg": 63.8,
      "sum": 319
    }
  }
}

Extended Stats Aggregation

高级统计聚合官网文档:Extended Stats Aggregation

用于高级统计,和基本统计功能类似,但是会比基本统计多4个统计结果:平方和、方差、标准差、平均值加/减两个标准差的区间。

##Extended Stats Aggregation
GET books/_search
{
  "size": 0, 
  "aggs": {
    "extend_stats_pirce": {
      "extended_stats":  {
        "field": "price"
      }
    }
  }
}

返回响应结果:

{
  "took": 14,
  "timed_out": false,
  "_shards": {
    "total": 3,
    "successful": 3,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 5,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "extend_stats_pirce": {
      "count": 5,
      "min": 46.5,
      "max": 81.4,
      "avg": 63.8,
      "sum": 319,
      "sum_of_squares": 21095.46,
      "variance": 148.65199999999967,
      "std_deviation": 12.19229264740638,
      "std_deviation_bounds": {
        "upper": 88.18458529481276,
        "lower": 39.41541470518724
      }
    }
  }
}

Value Count Aggregation

文档数量聚合官网文档:Value Count Aggregation

Value Count Aggregation 可按字段统计文档数量。

##Value Count Aggregation
GET books/_search
{
  "size": 0, 
  "aggs": {
    "doc_count": {
      "value_count":  {
        "field": "author"
      }
    }
  }
}

返回结果如下:

{
  "took": 6,
  "timed_out": false,
  "_shards": {
    "total": 3,
    "successful": 3,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 5,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "doc_count": {
      "value": 5
    }
  }
}

注意:

text 类型的字段不能做排序和聚合(terms Aggregation 除外),如下对 title 字段做聚合,title 定义为 text:

GET books/_search
{
  "size": 0, 
  "aggs": {
    "doc_count": {
      "value_count":  {
        "field": "title"
      }
    }
  }
}

返回结果如下:

{
  "error": {
    "root_cause": [
      {
        "type": "illegal_argument_exception",
        "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [title] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."
      }
    ],
    "type": "search_phase_execution_exception",
    "reason": "all shards failed",
    "phase": "query",
    "grouped": true,
    "failed_shards": [
      {
        "shard": 0,
        "index": "books",
        "node": "6n3douACShiPmlA9j2soBw",
        "reason": {
          "type": "illegal_argument_exception",
          "reason": "Fielddata is disabled on text fields by default. Set fielddata=true on [title] in order to load fielddata in memory by uninverting the inverted index. Note that this can however use significant memory. Alternatively use a keyword field instead."
        }
      }
    ]
  },
  "status": 400
}

2.2 桶聚合

桶聚合官网文档:Bucket Aggregations

Bucket 可以理解为一个桶,它会遍历文档中的内容,凡是符合某一要求的就放入一个桶中,分桶相当与 SQL 中 SQL 中的 group by。

桶聚合包括如下聚合:

terms Aggregation 用于分组聚合,统计属于各编程语言的书籍数量,如下:

GET books/_search
{
  "size": 0, 
  "aggs": {
    "terms_count": {
      "terms":  {
        "field": "language"
      }
    }
  }
}

返回结果如下:

{
  "took": 31,
  "timed_out": false,
  "_shards": {
    "total": 3,
    "successful": 3,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 5,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "terms_count": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "java",
          "doc_count": 2
        },
        {
          "key": "python",
          "doc_count": 2
        },
        {
          "key": "javascript",
          "doc_count": 1
        }
      ]
    }
  }
}

在 terms 分桶的基础上,还可以对每个桶进行指标聚合。例如,想统计每一类图书的平局价格,可以先按照 language 字段进行 Terms Aggregation,再进行 Avg Aggregattion,查询语句如下:

GET books/_search
{
  "size": 0, 
  "aggs": {
    "terms_count": {
      "terms":  {
        "field": "language"
      },
      "aggs": {
        "avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
  }
}

返回结果如下:

{
  "took": 8,
  "timed_out": false,
  "_shards": {
    "total": 3,
    "successful": 3,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 5,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "terms_count": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "java",
          "doc_count": 2,
          "avg_price": {
            "value": 58.35
          }
        },
        {
          "key": "python",
          "doc_count": 2,
          "avg_price": {
            "value": 67.95
          }
        },
        {
          "key": "javascript",
          "doc_count": 1,
          "avg_price": {
            "value": 66.4
          }
        }
      ]
    }
  }
}

Range Aggregation

Range Aggregation 是范围聚合,用于反映数据的分布情况。比如,对 books 索引中的图书按照价格区间在 0~50、50~80、80 以上进行范围聚合,如下:

GET books/_search
{
  "size": 0, 
  "aggs": {
    "price_range": {
      "range": {
        "field": "price",
        "ranges": [
          {"to": 50},
          {"from": 50, "to": 80},
          {"from": 80}
        ]
      }
    }
  }
}

返回结果如下:

{
  "took": 16,
  "timed_out": false,
  "_shards": {
    "total": 3,
    "successful": 3,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 5,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "price_range": {
      "buckets": [
        {
          "key": "*-50.0",
          "to": 50,
          "doc_count": 1
        },
        {
          "key": "50.0-80.0",
          "from": 50,
          "to": 80,
          "doc_count": 3
        },
        {
          "key": "80.0-*",
          "from": 80,
          "doc_count": 1
        }
      ]
    }
  }
}

Range Aggregation 不仅可以对数值型字段进行范围统计,也可以作用在日期类型上。Date Range Aggregation 专门用于日期类型的范围聚合,和 Range Aggregation 的区别在于日期的起止值可以使用数学表达式。

2.3 管道聚合

管道聚合官网文档:Pipeline Aggregations

Pipeline Aggregations 处理的对象是其他聚合的输出(而不是文档)。

2.4 矩阵聚合

矩阵聚合官网文档:Matrix Aggregations

Matrix Stats 聚合是一种面向数值型的聚合,用于计算一组文档字段中的以下统计信息:

计数:计算过程中每种字段的样本数量;

平均值:每个字段数据的平均值;

方差:每个字段样本数据偏离平均值的程度;

偏度:量化每个字段样本数据在平均值附近的非对称分布情况;

峰度:量化每个字段样本数据分布的形状;

协方差:一种量化描述一个字段数据随另一个字段数据变化程度的矩阵;

相关性:描述两个字段数据之间的分布关系,其协方差矩阵取值在[-1,1]之间。

主要用于计算两个数值型字段之间的关系。如对日志记录长度和 HTTP 状态码之间关系的计算。

GET /_search
{
    "aggs": {
        "statistics": {
            "matrix_stats": {
                "fields": ["log_size", "status_code"]
            }
        }
    }
}

 

posted on 2018-06-10 23:55  沐小悠  阅读(4215)  评论(0编辑  收藏  举报