wmjxoj - 1050: QAQ的公式求解(二)【快速幂 + 矩阵】
矩阵加快速幂运算才发现这么好用。
根据递推公式f(i+1) = fi + (i+1)*(i+1) + (i+1)构造矩阵
| f(i) + (i+1)*(i+1) + (i+1) | | 1 1 1 0 | | f(1) |
| (i + 2)*(i + 2) | = | 0 1 2 1 | * | (i+1)*(i+1) |
| i + 2 | | 0 0 1 1| | i + 1 |
| 1 | | 0 0 0 1| | 1 |
就ok了。
#include <map> #include <set> #include <cstdio> #include <cstring> #include <algorithm> #include <queue> #include <iostream> #include <stack> #include <cmath> #include <string> #include <vector> #include <cstdlib> //#include <bits/stdc++.h> //#define LOACL #define space " " using namespace std; typedef long long LL; //typedef __int64 Int; typedef pair<int, int> paii; const int INF = 0x3f3f3f3f; const double ESP = 1e-5; const double PI = acos(-1.0); const int MOD = 1e9 + 7; const int MAXN = 15; int n, m; struct Matrix { LL m[MAXN][MAXN]; int row, col; }; Matrix ori, res; void init() { ori.m[2][4] = ori.m[3][3] = ori.m[3][4] = ori.m[4][4] = 1; ori.m[1][1] = ori.m[1][2] = ori.m[1][3] = ori.m[2][2] = 1; ori.m[1][4] = ori.m[2][1] = ori.m[3][1] = 0; ori.m[2][3] = 2; ori.m[3][2] = ori.m[4][1] = ori.m[4][2] = ori.m[4][3] = 0; ori.col = ori.row = 4; } Matrix multi(Matrix x, Matrix y) { Matrix z; memset(z.m, 0, sizeof(z.m)); z.row = x.row; z.col = y.col; for (int i = 1; i <= x.row; i++) { for (int k = 1; k <= x.col; k++) { for (int j = 1; j <= y.col; j++) { z.m[i][j] += x.m[i][k]*y.m[k][j]%MOD; } z.m[i][k] %= MOD; } } return z; } Matrix pow_mod(Matrix a, LL x){ Matrix b; b.col = a.col; b.row = a.row; memset(b.m, 0, sizeof(b.m)); for (int i = 1; i <= 4; i++) { b.m[i][i] = 1; } while(x){ if(x&1) b = multi(a,b); a = multi(a, a); x >>= 1; } return b; } int main() { int T; init(); LL f, n; scanf("%d", &T); while (T--) { scanf("%lld%lld", &f, &n); res = pow_mod(ori, n - 1); LL ans = (f*res.m[1][1]%MOD + 4*res.m[1][2]%MOD + 2*res.m[1][3]%MOD + res.m[1][4]%MOD)%MOD; printf("%lld\n", ans); } return 0; }