有待整理的模板

矩阵快速幂

 

 1 #include<iostream>
 2 #include<cstring>
 3 #include<queue>
 4 #include<cstdio>
 5 #include<cmath>
 6 #include<algorithm>
 7 #define N 10
 8 using namespace std;
 9 struct Matrix{
10     LL m[N][N];
11 }init,unit;
12 int MOD;
13 Matrix Mult(Matrix m1,Matrix m2,int n=2){
14     Matrix ans;
15     for(int i=0;i<n;i++)
16         for(int j=0;j<n;j++){
17             ans.m[i][j]=0;
18             for(int k=0;k<n;k++)
19                 ans.m[i][j]=((LL)ans.m[i][j]+m1.m[i][k]*m2.m[k][j])%MOD;
20         }
21     return ans;
22 }
23 Matrix Pow(Matrix m1,int b,int n=2){
24     Matrix ans;
25     for(int i=0;i<n;i++)
26         for(int j=0;j<n;j++)
27             ans.m[i][j]=(i==j);
28     while(b){
29         if(b&1)
30             ans=Mult(ans,m1,n);
31         m1=Mult(m1,m1,n);
32         b>>=1;
33     }
34     return ans;
35 }
36 Matrix Add(Matrix m1,Matrix m2,int n=2){
37     Matrix ans;
38     for(int i=0;i<n;i++)
39         for(int j=0;j<n;j++)
40             ans.m[i][j]=((LL)m1.m[i][j]+m2.m[i][j])%MOD;
41     return ans;
42 }
43 Matrix slove(Matrix init,int k,int n=2){
44     if(k==1)
45         return init;
46     Matrix temp=slove(init,k>>1,n);
47     temp=Add(temp,Mult(temp,Pow(init,k>>1)));
48     if(k&1)
49         return Add(temp,Pow(init,k));
50     else
51         return temp;
52 }
53 int main(){
54     int k,b,n;
55     while(scanf("%d%d%d%d",&k,&b,&n,&MOD)!=EOF){
56         init.m[0][0]=init.m[0][1]=init.m[1][0]=1;
57         init.m[1][1]=0;
58         unit.m[0][0]=unit.m[1][1]=1;
59         unit.m[1][0]=unit.m[0][1]=0;
60         Matrix t;
61         t=Pow(init,b);
62         init=Pow(init,k);
63         //init.m[0][1]即第k项fib,为A^k
64         init=Add(unit,slove(init,n-1)); //B=A^k,   B^0+B^1+B^2……+B^n-1    
65         init=Mult(init,t);
66         printf("%I64d\n",init.m[0][1]);
67     }
68     return 0;
69 }
View Code

 快速幂

 1 long long quick_mod(long long a,long long b,long long m) {
 2     long long ans = 1;
 3     while (b) {
 4         if (b&1) {
 5             ans = (ans * a) % m;
 6             b--;
 7         }
 8         b/=2;
 9         a = a * a% m;
10     }
11     return ans;
12 }
View Code

 组合数求模(逆元)

 1 ll powmod(ll a, ll n)
 2 {
 3     ll ret = 1;
 4     for (; n; n>>=1, a=a*a%mod)
 5         if (n&1)
 6         ret = ret*a%mod;
 7     return ret % mod;
 8 }
 9 void init(ll m, ll k)
10 {
11     C[0] = 1;
12     for (ll i=1;i<=k;i++)
13         C[i] = ( C[i-1] * (m-i+1) %mod )* inv[i]% mod;
14 }
15 
16 memset(inv, 0, sizeof inv);
17     for (int i=1;i<N;i++) inv[i] = powmod(i, mod-2)%mod;

 

 

分数表示模板

 

  1 #include <cstdio>
  2 #include <cstring> #include <cmath>
  3 #include <algorithm>
  4 using namespace std;
  5 const int maxn = 500;
  6 
  7 struct fraction {
  8     long long numerator; // 分子
  9     long long denominator; // 分母
 10     fraction() {
 11         numerator = 0;
 12         denominator = 1;
 13     }
 14     fraction(long long num) {
 15         numerator = num;
 16         denominator = 1;
 17     }
 18     fraction(long long a, long long b) {
 19         numerator = a;
 20         denominator = b;
 21         this->reduction();
 22     }
 23 
 24     void operator = (const long long num) {
 25         numerator = num;
 26         denominator = 1;
 27         this->reduction();
 28     }
 29 
 30     void operator = (const fraction &b) {
 31         numerator = b.numerator;
 32         denominator = b.denominator;
 33         this->reduction();
 34     }
 35 
 36     fraction operator + (const fraction &b) const {
 37         long long gcdnum = __gcd(denominator, b.denominator);
 38         fraction tmp = fraction(numerator*(b.denominator/gcdnum) + b.numerator*(denominator/gcdnum), denominator/gcdnum*b.denominator);
 39         tmp.reduction();
 40         return tmp;
 41     }
 42 
 43     fraction operator + (const int &b) const {
 44         return ((*this) + fraction(b));
 45     }
 46 
 47     fraction operator - (const fraction &b) const {
 48         return ((*this) + fraction(-b.numerator, b.denominator));
 49     }
 50 
 51     fraction operator - (const int &b) const {
 52         return ((*this) - fraction(b));
 53     }
 54 
 55     fraction operator * (const fraction &b) const {
 56         fraction tmp = fraction(numerator*b.numerator, denominator * b.denominator);
 57         tmp.reduction();
 58         return tmp;
 59     }
 60 
 61     fraction operator * (const int &b) const {
 62         return ((*this) * fraction(b));
 63     }
 64 
 65     fraction operator / (const fraction &b) const {
 66         return ((*this) * fraction(b.denominator, b.numerator));
 67     }
 68 
 69     void reduction() {
 70         if (numerator == 0) {
 71             denominator = 1;
 72             return;
 73         }
 74         long long gcdnum = __gcd(numerator, denominator);
 75         numerator /= gcdnum;
 76         denominator /= gcdnum;
 77     }
 78     void print() {
 79         if (denominator == 1) printf("%lld\n", numerator);
 80         else {
 81             long long num = numerator/denominator;
 82             long long tmp = num;
 83             int len = 0;
 84             while (tmp) {
 85                 len++;
 86                 tmp/=10;
 87             }
 88 
 89             for (int i = 0; i < len; i++) printf(" ");
 90             if (len != 0) printf(" ");
 91             printf("%lld\n",numerator%denominator);
 92 
 93             if (num != 0) printf("%lld ", num);
 94             tmp = denominator;
 95             while (tmp) {
 96                 printf("-");
 97                 tmp/=10;
 98             }
 99             puts("");
100 
101             for (int i = 0; i < len; i++) printf(" ");
102             if (len != 0) printf(" ");
103             printf("%lld\n",denominator);
104         }
105     }
106 } f[maxn];
107 
108 int main() {
109     int n;
110     while (scanf("%d", &n) != EOF)
111     {
112         f[0] = 0;
113         for (int i = 1; i <= n; i++)
114             f[i] = f[i-1] + fraction(1, i);
115         f[n] = f[n] * n;
116 
117         f[n].print();
118     }
119     return 0;
120 }

 

posted @ 2015-05-08 10:24  miao_a_miao  阅读(129)  评论(0编辑  收藏  举报