数分解问题:把一个数分解成很多数

 

 

 

数分解问题:把一个数分解成很多数

 

1.数字相同但位置不同的方案看作两个方法:

5=1+1+2+3=2+3+1+1看作是不同的两个方法

f(n)= f(n-1)+f(n-2)+…+ f(1) +1       (第一个数字为1,2,…,n-1,n)

 

证明 f(n)=2^(n-1):

n=1,f(1)=1=2^(1-1),

假设n<=k时,f(n)=2^(n-1),

f(k+1)=1+1+2+…+2^(k-1)=2^k,得证。

 

Code:

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #define maxn 1000
 4 
 5 long arr[maxn+1],pos=0,num=0;
 6 
 7 void dfs(long d)
 8 {
 9     long i;
10     for (i=1;i<d;i++)
11     {
12         pos++;
13         arr[pos]=i;
14         dfs(d-i);
15         pos--;
16     }
17     num++;
18     printf("%ld : ",num);
19     //last element is d
20     for (i=1;i<=pos;i++)
21         printf("%ld ",arr[i]);
22     printf("%ld\n",d);
23 }
24 
25 int main()
26 {
27     long n;
28     scanf("%ld",&n);
29 dfs(n);
30     printf("ans = %ld\n",num);
31     return 0;
32 }

 

Result:

 

 

2. 数字相同但位置不同的方案看作一个方法

5=1+1+2+3=2+3+1+1看作是同一个方法

 

程序做法:按从小到大(可以相同)排序,这样就保证不重复

4=1+1+1+1 (1<=1<=1<=1) =1+1+2 (1<=1<=2) =1+3 (1<3) =4

t(n,k):对数字n分解,最大的数为k的方法数

I.(n<>k)

t(n,k)=t(n-k,1)+t(n-k,2)+t(n-k,3)+……+t(n-k,s)

(s满足s<=k且s<= n-k)

II.(n=k)

t(n,k)=1

 

f(n)=t(n,n)+t(n,n-1)+t(n,n-2)+t(n,1)

 

Code:

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #define maxn 1000
 4 
 5 long arr[maxn+1],pos=0,num=0;
 6 
 7 void dfs(long d)
 8 {
 9     long i;
10     //arr[pos+1](i)>=arr[pos]
11     //所以要初始化arr[0]=1
12     for (i=arr[pos];i<d;i++)
13     {
14         pos++;
15         arr[pos]=i;
16         dfs(d-i);
17         pos--;
18     }
19     if (d>=arr[pos])
20     {
21         num++;
22         printf("%ld : ",num);
23         //last element is d
24         for (i=1;i<=pos;i++)
25             printf("%ld ",arr[i]);
26         printf("%ld\n",d);
27     }
28 }
29 
30 int main()
31 {
32     long n;
33     scanf("%ld",&n);
34     arr[0]=1;
35     dfs(n);
36     printf("ans = %ld\n",num);
37     return 0;
38 }

Result:

 

求方法总数:

Code:

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #define maxn 1000
 4 
 5 long t[maxn+1][maxn+1],f[maxn];
 6 
 7 long min(long a,long b)
 8 {
 9     if (a>b)
10         return b;
11     else
12         return a;
13 }
14 
15 int main()
16 {
17     long n,i,j,k;
18     scanf("%ld",&n);
19     for (i=1;i<=n;i++)
20     {
21         t[i][i]=1;
22         for (j=1;j<=i-1;j++)
23             t[i][j]=0;
24         f[i]=0;
25     }
26     //t(n,k)=t(n-k,1)+t(n-k,2)+t(n-k,3)+……+t(n-k,s)
27     for (i=2;i<=n;i++)
28         for (k=1;k<i;k++)
29             //t(i,k)
30             for (j=1;j<=min(k,i-k);j++)
31                 t[i][k]+=t[i-k][j];
32     for (i=1;i<=n;i++)
33         for (j=i;j>=1;j--)
34             f[i]+=t[i][j];
35     for (i=1;i<=n;i++)
36         printf("%ld : %ld\n",i,f[i]);
37     return 0;
38 }

 

Situation:

n       =1,2,3,4,5,6 , 7 , 8 , 9 , 10

Total         =1,2,3,5,7,11,15,22,30,42

 

 

 

3.数字不允许重复

如不可以5=3+1+1 (不能有两个1)

 

 

程序做法:按从小到大(不可以相同)排序,这样就保证不重复

6=1+2+3 (1<2<3) =1+5 (1<5) =2+4 (2<4) =6

t(n,k):对数字n分解,最大的数为k的方法数

I.(n<>k)

t(n,k)=t(n-k,1)+t(n-k,2)+t(n-k,3)+……+t(n-k,s)

(s满足s<k且s<= n-k)

II.(n=k)

t(n,k)=1

 

f(n)=t(n,n)+t(n,n-1)+t(n,n-2)+t(n,1)

 

Code:

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #define maxn 1000
 4 
 5 long arr[maxn+1],pos=0,num=0;
 6 
 7 void dfs(long d)
 8 {
 9     long i;
10     //arr[pos+1](i)>arr[pos]
11     //所以要初始化arr[0]=0
12     //与程序2(i=arr[pos])不同
13     for (i=arr[pos]+1;i<d;i++)
14     {
15         pos++;
16         arr[pos]=i;
17         dfs(d-i);
18         pos--;
19     }
20     //与程序2(d>=arr[pos])不同
21     if (d>arr[pos])
22     {
23         num++;
24         printf("%ld : ",num);
25         //last element is d
26         for (i=1;i<=pos;i++)
27             printf("%ld ",arr[i]);
28         printf("%ld\n",d);
29     }
30 }
31 
32 int main()
33 {
34     long n;
35     scanf("%ld",&n);
36     arr[0]=0;
37     dfs(n);
38     printf("ans = %ld\n",num);
39     return 0;
40 }

Result:

 

求方法总数:

Code:

 1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #define maxn 1000
 4 
 5 long t[maxn+1][maxn+1],f[maxn];
 6 
 7 long min(long a,long b)
 8 {
 9     if (a>b)
10         return b;
11     else
12         return a;
13 }
14 
15 int main()
16 {
17     long n,i,j,k;
18     scanf("%ld",&n);
19     for (i=1;i<=n;i++)
20     {
21         t[i][i]=1;
22         for (j=1;j<=i-1;j++)
23             t[i][j]=0;
24         f[i]=0;
25     }
26     //t(n,k)=t(n-k,1)+t(n-k,2)+t(n-k,3)+……+t(n-k,s)
27     for (i=2;i<=n;i++)
28         for (k=1;k<i;k++)
29             //t(i,k)
30             //与程序2(j<=min(k,i-k))不同的地方
31             for (j=1;j<=min(k-1,i-k);j++)
32                 t[i][k]+=t[i-k][j];
33     for (i=1;i<=n;i++)
34         for (j=i;j>=1;j--)
35             f[i]+=t[i][j];
36     for (i=1;i<=n;i++)
37         printf("%ld : %ld\n",i,f[i]);
38     return 0;
39 }

 

Situation:

n       =1,2,3,4,5,6,7,8,9,10

Total         =1,1,2,2,3,4,5,6,8,10

 

posted @ 2017-04-16 22:52  congmingyige  阅读(1754)  评论(0编辑  收藏  举报