用Sklearn实现聚类算法并用散点图展现效果

一、背景

  好记性不如烂笔头。记录 一下项目上用到的算法与思路

二、问题描述

  近期收到一个项目,为A公司做数据整合,并开发出一套人物画像系统与俩个算法模型,其中的一个模型就是做图纸的分类。甲方(A公司)在最终会议前,给了点样例数据,让我们先做出个demo,给甲方的大老板们看一下

三、数据样例

  甲方给的数据,包括:项目数据,人员数据,图纸数据。以下的内容只用了图纸数据,毕竟只是做图纸的分类,用不到其他的样本数据

  下面是图纸的名称示例:

          

 

 四、思路

  1.将图纸名称进行分词,去除停用词,添加自定义词典,作为分析的特征

  2.计算每个特征的 Tf-Idf(词频-逆文档频率),作为特征的值

  3.选择聚类算法,开始的时候我是首选Dbscan的,毕竟相比于Kmeans 来说,不需要事先知道要分几类,调整领域和最小点数就可以完成分类,但是理论败给现实,图纸的名称分词的效果实在太接近,而且

  样例数据本来就少,不足以区分开来,导致最后领域和最小点数的值无论怎么调效果都不尽人意,毕竟要给人家做demo,最后只好选了Kmeans。

五、代码实现

  1.模型代码

 1 # -*- coding:UTF-8 -*-
 2 import jieba
 3 import matplotlib.pyplot as plt
 4 import pandas  as pd
 5 from sklearn.cluster import KMeans
 6 from sklearn.feature_extraction.text import TfidfVectorizer
 7 from sklearn.manifold import TSNE
 8 
 9 data = open(r'xxx[文件路径].csv', encoding="utf8")
10 data = pd.read_csv(data)
11 file_userdict = 'userdict.txt'
12 # 导入自定义词典(不让jieba把他们分开)
13 jieba.load_userdict(file_userdict)
14 # 停用词列表
15 stop_words = ["-", "", "", ".", "pdf", "-"]
16 # tf-idf 词频-逆文档频率 tokenizer  意为分词器 stop_words 停用词
17 tf = TfidfVectorizer(tokenizer=jieba.lcut, stop_words=stop_words)
18 # tf-idf  计算
19 X = tf.fit_transform(data["图纸名"])
20 # 将结果转为numpy的数组
21 res_matrix = X.toarray()
22 # kmeans,目标定位2类
23 kmeans = KMeans(n_clusters=2)
24 kmeans.fit(X)

  2.结果可视化代码

 1 # 预测结果的标签列表
 2 labels = kmeans.labels_
 3 labels = pd.DataFrame(labels, columns=['labels'])
 4 res_matrix = pd.DataFrame(res_matrix)
 5 res_matrix.insert(res_matrix.shape[1], 'labels', labels)
 6 # tsne()将关系数据降为二维数据
 7 tsne = TSNE()
 8 a = tsne.fit_transform(res_matrix)
 9 liris = pd.DataFrame(a, index=res_matrix.index)
10 d1 = liris[res_matrix['labels'] == 0]
11 d2 = liris[res_matrix['labels'] == 1]
12 print(d1)
13 print(d2)
14 plt.plot(d1[0], d1[1], 'r.', d2[0], d2[1], 'go')
15 plt.show()

  3.分类效果展示

     

 

posted @ 2020-10-19 14:58  紫菱_cmx  阅读(1435)  评论(0编辑  收藏  举报