bzoj 3669: [Noi2014]魔法森林 (LCT & kruskal)

这道题呢,

首先按照关键字a排序,然后不断地加边,用lct维护这个过程

具体实现: 先按照关键字a排序,枚举每一条边,判断两点是否已经联通(kruskal 部分)如果联通,就在两点路径间寻找最大的b, 和这条边的b值相比较,如果更大一些,就切断u,v之间的路径, 并连上这条边;

如果不联通,就让它联通(好随意啊= =

最后寻找路径之间最大的b + 当前的a,和原来的答案相比较。

剩下的用lct维护

注意联通的方式是把把边看做点, 然后连接(所以加上n)   ->link(u, i + n);  link(v, i + n);

(由于我一直不理解怎么保证当前的a一定在路径上,所以这是自己yy的证明(可能有很大的bug,勿喷):当前的a如果不在(1,n)路径之中,但(1,n)已联通,那么最优值在之前已经被计算过,否则由于a是递增的,那么此时的a就是路径中最大的a)

下面是代码

  1 /**************************************************************
  2     Problem: 3669
  3     User: cminus
  4     Language: C++
  5     Result: Accepted
  6     Time:5104 ms
  7     Memory:6128 kb
  8 ****************************************************************/
  9  
 10 #include <cstdio>
 11 #include <algorithm>
 12 using namespace std;
 13 #define l(x) ch[x][0]
 14 #define r(x) ch[x][1]
 15 #define kd(x) (r(fa[x]) == x)
 16 #define setc(f, c, k)   (ch[fa[c] = f][k] = c)
 17 #define isRoot(x)   (r(fa[x]) != x && l(fa[x]) != x)
 18 const int N = 150100;
 19  
 20 struct Edge{
 21     int u, v, a, b;
 22     inline void init(){
 23         scanf("%d %d %d %d", &u, &v, &a, &b);
 24     }
 25     inline bool operator <(const Edge &rhs)const{
 26         return a < rhs.a;
 27     }
 28 }e[100100];
 29 int fa[N], ch[N][2], rev[N], val[N], maxp[N], f[50100];
 30 int INF = 0x7f7f7f7f;
 31  
 32 inline void update(int x) {
 33     maxp[x] = x;
 34     if (val[maxp[x]] < val[maxp[l(x)]])  maxp[x] = maxp[l(x)];
 35     if (val[maxp[x]] < val[maxp[r(x)]])  maxp[x] = maxp[r(x)];
 36 }
 37  
 38 inline void push(int x) {
 39     if (rev[x] and x){
 40         rev[x] = 0;
 41         if (l(x))   rev[l(x)] ^= 1, swap(l(l(x)), r(l(x)));
 42         if (r(x))   rev[r(x)] ^= 1, swap(l(r(x)), r(r(x)));
 43     }
 44 }
 45  
 46 inline void pushDown(int x) {
 47     if (! isRoot(x))    pushDown(fa[x]);
 48     push(x);
 49 }
 50  
 51 inline void rotate(int x) {
 52     int y = fa[x], t = kd(x);
 53     setc(y, ch[x][t^1], t);
 54     if (isRoot(y)) fa[x] = fa[y];
 55     else setc(fa[y], x, kd(y));
 56     setc(x, y, t^1);
 57     update(y); update(x);
 58 }
 59  
 60 inline void splay(int x){
 61     pushDown(x);
 62     while(! isRoot(x)){
 63         if (! isRoot(fa[x]))
 64             if (kd(x) == kd(fa[x]))     rotate(fa[x]);
 65             else    rotate(x); rotate(x);
 66     }
 67 }
 68  
 69 inline void access(int x){
 70     int t = 0;
 71     while(x) {
 72         splay(x); 
 73         r(x) = t; update(x);
 74         t = x; x = fa[x];
 75     }
 76 }
 77  
 78 inline void makeRoot(int x){
 79     access(x); splay(x);
 80     rev[x] ^= 1;  swap(l(x), r(x));
 81 } 
 82  
 83 inline void link(int u, int v) {    makeRoot(u);  fa[u] = v; }
 84  
 85 inline void cut(int u, int v){
 86     makeRoot(u); 
 87     access(v); splay(v);
 88     fa[u] = l(v) = 0;
 89 }
 90  
 91 inline int query(int u, int v){
 92     makeRoot(u);
 93     access(v); splay(v);
 94     return maxp[v];
 95 }
 96  
 97 int find(int x) { return f[x] == x ? x : f[x] = find(f[x]); }
 98  
 99 int main(){
100     int n, m;
101     scanf("%d %d", &n, &m);
102     int ans = INF;
103     for (int i = 1; i <= m; i++) e[i].init();
104     for (int i = 1; i <= n; i++) f[i] = i;
105     sort(e + 1, e + m + 1); 
106     for (int i = 1; i <= m; i++){
107         int u = e[i].u, v = e[i].v, rt1 = find(u), rt2 = find(v);
108         val[i + n] = e[i].b; maxp[i + n] = i + n; 
109         if (rt1 == rt2){
110             int p = query(u, v);
111             if (val[p] > e[i].b)   cut(u, p), cut(v, p);
112             else   continue;    
113         }
114         else f[rt1] = rt2;
115         link(u, i + n); link(v, i + n);
116         if (find(1) == find(n)) ans = min(ans, val[query(1, n)] + e[i].a);
117     }
118     printf("%d\n", ans == INF ? -1 : ans);
119     return 0;
120 } 

 

posted @ 2017-06-20 21:01  cminus  阅读(196)  评论(0编辑  收藏  举报