计算几何模板(自己打的参与修正)(刘汝佳)

//
//  main.cpp
//  demo
//
//  Created by Yanbin GONG on 14/4/2018.
//  Copyright © 2018 Yanbin GONG. All rights reserved.
//

//向量的基本运算

#include <cmath>
#include <vector>

using namespace std;


//基本定义
struct Point{
    double x,y;
    Point(double x=0, double y=0):x(x),y(y){}//构造函数方便代码编写
};
typedef Point Vector; //程序实现上, Vector只是Point的别名(因为起点挪到了原点)

Vector operator + (Vector A, Vector B) {return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Vector A, Vector B) {return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (Vector A, double p) {return Vector(A.x*p,A.y*p);}
Vector operator / (Vector A, double p) {return Vector(A.x/p,A.y/p);}

// const &的作用是直接引用但是不改变,会节约内存
bool operator < (const Point& a, const Point& b){
    return a.x<b.x || (a.x==b.x&&a.y<b.y);
}

const double eps = 1e-10; //设置精度在小数点后十位
//如果两个数的差距小于这个数字就当做他们相等

//判断这个数是为0,还是小于0,还是大于0
int dcmp(double x){
    //fabs为绝对值函数
    if(fabs(x)<eps)return 0; //fabs在cmath里
    else return x<0? -1:1;
}

bool operator == (const Point& a, const Point& b){
    return (dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0);
}

//向量基本运算
double Dot(Vector A, Vector B) {return A.x*B.x + A.y*B.y;}//点积
double Length(Vector A) {return sqrt(Dot(A,A));}//自身乘积再开根号保证绝对值稳定性
double Angle(Vector A, Vector B) {return acos(Dot(A,B)/Length(A)/Length(B));}

//叉乘
double Cross(Vector A, Vector B) {return A.x*B.y-A.y*B.x;}
double Area2(Point A, Point B, Point C) {return Cross(B-A, C-A);}//相当于上面的为原点,为面积的两倍

//角度转弧度
double torad(double deg)
{
    return deg/180*acos(-1);
}
//旋转
Vector Rotate(Vector A, double rad) {
    return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}

//单位法线
Vector Normal(Vector A){
    double L = Length(A);
    return Vector(-A.y/L,A.x/L);
}

//点和直线

//两条直线的交点
//一条直线可以写成一个点和一个向量(方向)
//
Point GetLineIntersection(Point P, Vector v, Point Q, Vector w){
    Vector u = P-Q;
    double t = Cross(w,u)/Cross(v,w);
    return P+v*t;
}

//点到直线的距离
double DistanceToLine(Point P, Point A, Point B){
    Vector v1=B-A, v2=P-A;
    return fabs(Cross(v1,v2))/Length(v1); //如果不取绝对值,得到的是有向距离
}

//点到线段的距离
double DistanceToSegment(Point P, Point A, Point B){
    if(A==B) return Length(P-A);
    Vector v1=B-A, v2=P-A, v3=P-B;
    //投影不在线段上的情况
    if(dcmp(Dot(v1,v2))<0) return Length(v2); //P在靠A侧
    else if(dcmp(Dot(v1,v3))>0) return Length(v3); //在靠近B的一侧
    else return fabs(Cross(v1,v2))/Length(v1);
}

//点在直线上的投影
Point GetLineProjection(Point P, Point A, Point B){
    Vector v=B-A;
    return A+v*(Dot(v,P-A)/Dot(v,v)); //从A移动到投影
}

//线段相交判定 相交为1 (交点不为任何一线段的端点)
bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2){
    double c1 = Cross(a2-a1,b1-a1);
    double c2 = Cross(a2-a1,b2-a1);
    double c3 = Cross(b2-b1,a1-b1);
    double c4 = Cross(b2-b1,a2-b1);
    return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
}
//判断一个点是否在一条线段上(用于判断一个端点是否在另一个线段上)
//如果c1 c2窦唯0,则线段共线
bool OnSegment(Point p, Point a1, Point a2){
    return dcmp(Cross(a1-p, a2-p))==0 && dcmp(Dot(a1-p, a2-p))<0;
}

//与圆和球有关的计算问题

struct Line{
    Point p;//线上一点
    Vector v;//方向向量
    double ang; //极角,从x正半轴旋转到v所需要的角(弧度)
    Line(Point p, Vector v):p(p),v(v){ang = atan2(v.y,v.x);}
    Point point(double t){return p+v*t;};
    bool operator < (const Line& L) const{ //排序用的比较运算符
        return ang < L.ang;
    }
};

struct Circle{
    Point c;
    double r;
    Circle(Point c, double r):c(c),r(r){}
    Point point(double a){ //通过圆心角求坐标的函数
        return Point(c.x+cos(a)*r,c.y+sin(a)*r);
    }
};

//直线与圆的交点
//sol存放的是交点本身,代码没有清空sol,就很方便:可以反复调用把所有交点放在一个sol里
int getLineCircleIntersection(Line L, Circle C, double& t1, double& t2, vector<Point>& sol){
    double a=L.v.x, b=L.p.x-C.c.x, c=L.v.y, d=L.p.y-C.c.y;
    double e=a*a+c*c, f=2*(a*b+c*d), g=b*b+d*d-C.r*C.r;
    double delta = f*f - 4*e*g;//判别式
    if(dcmp(delta)<0) return 0; //相离
    if(dcmp(delta)==0){
        t1=t2=-f/(2*e);
        sol.push_back(L.point(t1));
        return 1;
    }
    //相交
    t1 = (-f-sqrt(delta))/(2*e);
    sol.push_back(L.point(t1));
    t2 = (-f+sqrt(delta))/(2*e);
    sol.push_back(L.point(t2));
    return 2;
}

//计算向量极角
double angle(Vector v){return atan2(v.y,v.x);}

//两圆相交
int getCircleCircleIntersection(Circle C1, Circle C2, vector<Point>& sol){
    double d=Length(C1.c-C2.c);
    if(dcmp(d)==0){
        if(dcmp(C1.r-C2.r)==0) return -1; //两圆重合
        return 0;
    }
    if(dcmp(C1.r+C2.r-d)<0) return 0; //内含
    if(dcmp(fabs(C1.r-C2.r)-d)>0) return 0; //外离
    
    double a = angle(C2.c-C1.c); //向量C1C2的极角
    double da = acos((C1.r*C1.r+d*d-C2.r*C2.r)/(2*C1.r*d));
    //C1C2到C1P1的角
    Point p1 = C1.point(a-da), p2 = C1.point(a+da);
    
    sol.push_back(p1);
    if(p1==p2)return 1;
    sol.push_back(p2);
    return 2;
}

//过定点作圆切线,v[i]是第i条切线,返回切线条数
int getTangents(Point p, Circle C, Vector* v){
    Vector u = C.c-p;
    double dist = Length(u);
    if(dist<C.r) return 0;
    else if(dcmp(dist-C.r)==0){ //p在圆上,只有一条切线
        v[0]=Rotate(u,M_PI/2);
        return 1;
    }
    else{
        double ang = asin(C.r/dist);
        v[0] = Rotate(u, -ang);
        v[1] = Rotate(u, +ang);
        return 2;
    }
}

//两圆的公切线
int getTangents(Circle A, Circle B, Point* a, Point* b){
    int cnt=0;
    if(A.r<B.r){
        swap(A,B);
        swap(a,b);
    }
    int d2=(A.c.x-B.c.x)*(A.c.x-B.c.x)+(A.c.y-B.c.y)*(A.c.y-B.c.y);
    int rdiff=A.r-B.r;
    int rsum=A.r+B.r;
    if(d2<rdiff*rdiff) return 0; //内含
    double base = atan2(B.c.y-A.c.y,B.c.x-A.c.x);
    if(d2==0&&A.r==B.r) return -1; //无限多条切线
    if(d2==rdiff*rdiff){//内切,一条切线
        a[cnt]=A.point(base);
        b[cnt]=B.point(base);
        cnt++;
        return 1;
    }
    //有外共切线
    double ang = acos(A.r-B.r)/sqrt(d2);
    a[cnt] = A.point(base+ang);
    b[cnt] = B.point(base+ang);
    cnt++;
    a[cnt] = A.point(base+ang);
    b[cnt] = B.point(base-ang);
    cnt++;
    if(d2==rsum*rsum){
        a[cnt]=A.point(base);
        b[cnt]=B.point(M_PI+base);
        cnt++;
    }
    else if(d2>rsum*rsum){
        double ang=acos((A.r+B.r)/sqrt(d2));
        a[cnt]=A.point(base+ang);
        b[cnt]=B.point(M_PI+base+ang);
        cnt++;
        a[cnt]=A.point(base-ang);
        b[cnt]=B.point(M_PI+base-ang);
        cnt++;
    }
    return cnt;
}

//三角形外接圆(三点保证不共线)
Circle CircumscribedCircle(Point p1, Point p2, Point p3){
    double Bx = p2.x-p1.x, By = p2.y-p1.y;
    double Cx = p3.x-p1.x, Cy = p3.y-p1.y;
    double D = 2*(Bx*Cy-By*Cx);
    double cx = (Cy*(Bx*Bx+By*By)-By*(Cx*Cx+Cy*Cy))/D+p1.x;
    double cy = (Bx*(Cx*Cx+Cy*Cy)-Cx*(Bx*Bx+By*By))/D+p1.y;
    Point p = Point(cx,cy);
    return Circle(p,Length(p1-p));
}
//三角形内切圆
Circle InscribedCircle(Point p1, Point p2, Point p3){
    double a = Length(p2-p3);
    double b = Length(p3-p1);
    double c = Length(p1-p2);
    Point p = (p1*a+p2*b+p3*c)/(a+b+c);
    return Circle(p, DistanceToLine(p, p1, p2));
}


//二维几何常用算法
typedef vector<Point> Polygon;
//多边形的有向面积
double PolygonArea(Polygon po) {
    int n = po.size();
    double area = 0.0;
    for(int i = 1; i < n-1; i++) {
        area += Cross(po[i]-po[0], po[i+1]-po[0]);
    }
    return area * 0.5;
}

//点在多边形内判定
int isPointInPolygon(Point p, Polygon poly){
    int wn = 0; //绕数
    int n = poly.size();
    for(int i=0;i<n;i++){
        if(OnSegment(p,poly[i],poly[(i+1)%n])) return -1;//边界上
        int k = dcmp(Cross(poly[(i+1)%n]-poly[i], p-poly[i]));
        int d1 = dcmp(poly[i].y-p.y);
        int d2 = dcmp(poly[(i+1)%n].y-p.y);
        if(k>0&&d1<=0&&d2>0) wn++;
        if(k<0&&d2<=0&&d1>0) wn--;
    }
    if(wn!=0) return 1;//内部
    return 0;//外部
}

//凸包
//Andrew算法
bool myCmp(Point A, Point B)
{
    if(A.x != B.x)    return A.x < B.x;
    else return A.y < B.y;
}

int ConvexHall (Point* p, int n, Point* ch){
    sort(p,p+n,myCmp); //先比较x坐标,再比较y坐标
    int m = 0;
    for(int i=0;i<n;i++){
        while(m>1&&Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2])<=0) m--;
        ch[m++] = p[i];
    }
    if(n>1)m--;
    return m;
}
//凸包(Andrew算法)  
//如果不希望在凸包的边上有输入点,把两个 <= 改成 <  
//如果不介意点集被修改,可以改成传递引用  
Polygon ConvexHull(vector<Point> p) {  
    //预处理,删除重复点  
    sort(p.begin(), p.end());  
    p.erase(unique(p.begin(), p.end()), p.end());  
    int n = p.size(), m = 0;  
    Polygon res(n+1);  
    for(int i = 0; i < n; i++) {  
        while(m > 1 && Cross(res[m-1]-res[m-2], p[i]-res[m-2]) <= 0) m--;  
        res[m++] = p[i];  
    }  
    int k = m;  
    for(int i = n-2; i >= 0; i--) {  
        while(m > k && Cross(res[m-1]-res[m-2], p[i]-res[m-2]) <= 0) m--;  
        res[m++] = p[i];  
    }  
    m -= n > 1;  
    res.resize(m);  
    return res;  
}  
 

 

  1 //
  2 //  main.cpp
  3 //  demo
  4 //
  5 //  Created by Yanbin GONG on 14/4/2018.
  6 //  Copyright © 2018 Yanbin GONG. All rights reserved.
  7 //
  8 
  9 //向量的基本运算
 10 
 11 #include <cmath>
 12 #include <vector>
 13 
 14 using namespace std;
 15 
 16 
 17 //基本定义
 18 struct Point{
 19     double x,y;
 20     Point(double x=0, double y=0):x(x),y(y){}//构造函数方便代码编写
 21 };
 22 typedef Point Vector; //程序实现上, Vector只是Point的别名(因为起点挪到了原点)
 23 
 24 Vector operator + (Vector A, Vector B) {return Vector(A.x+B.x,A.y+B.y);}
 25 Vector operator - (Vector A, Vector B) {return Vector(A.x-B.x,A.y-B.y);}
 26 Vector operator * (Vector A, double p) {return Vector(A.x*p,A.y*p);}
 27 Vector operator / (Vector A, double p) {return Vector(A.x/p,A.y/p);}
 28 
 29 // const &的作用是直接引用但是不改变,会节约内存
 30 bool operator < (const Point& a, const Point& b){
 31     return a.x<b.x || (a.x==b.x&&a.y<b.y);
 32 }
 33 
 34 const double eps = 1e-10; //设置精度在小数点后十位
 35 //如果两个数的差距小于这个数字就当做他们相等
 36 
 37 //判断这个数是为0,还是小于0,还是大于0
 38 int dcmp(double x){
 39     //fabs为绝对值函数
 40     if(fabs(x)<eps)return 0; //fabs在cmath里
 41     else return x<0? -1:1;
 42 }
 43 
 44 bool operator == (const Point& a, const Point& b){
 45     return (dcmp(a.x-b.x)==0&&dcmp(a.y-b.y)==0);
 46 }
 47 
 48 //向量基本运算
 49 double Dot(Vector A, Vector B) {return A.x*B.x + A.y*B.y;}//点积
 50 double Length(Vector A) {return sqrt(Dot(A,A));}//自身乘积再开根号保证绝对值稳定性
 51 double Angle(Vector A, Vector B) {return acos(Dot(A,B)/Length(A)/Length(B));}
 52 
 53 //叉乘
 54 double Cross(Vector A, Vector B) {return A.x*B.y-A.y*B.x;}
 55 double Area2(Point A, Point B, Point C) {return Cross(B-A, C-A);}//相当于上面的为原点,为面积的两倍
 56 
 57 //角度转弧度
 58 double torad(double deg)
 59 {
 60     return deg/180*acos(-1);
 61 }
 62 //旋转
 63 Vector Rotate(Vector A, double rad) {
 64     return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
 65 }
 66 
 67 //单位法线
 68 Vector Normal(Vector A){
 69     double L = Length(A);
 70     return Vector(-A.y/L,A.x/L);
 71 }
 72 
 73 //点和直线
 74 
 75 //两条直线的交点
 76 //一条直线可以写成一个点和一个向量(方向)
 77 //
 78 Point GetLineIntersection(Point P, Vector v, Point Q, Vector w){
 79     Vector u = P-Q;
 80     double t = Cross(w,u)/Cross(v,w);
 81     return P+v*t;
 82 }
 83 
 84 //点到直线的距离
 85 double DistanceToLine(Point P, Point A, Point B){
 86     Vector v1=B-A, v2=P-A;
 87     return fabs(Cross(v1,v2))/Length(v1); //如果不取绝对值,得到的是有向距离
 88 }
 89 
 90 //点到线段的距离
 91 double DistanceToSegment(Point P, Point A, Point B){
 92     if(A==B) return Length(P-A);
 93     Vector v1=B-A, v2=P-A, v3=P-B;
 94     //投影不在线段上的情况
 95     if(dcmp(Dot(v1,v2))<0) return Length(v2); //P在靠A侧
 96     else if(dcmp(Dot(v1,v3))>0) return Length(v3); //在靠近B的一侧
 97     else return fabs(Cross(v1,v2))/Length(v1);
 98 }
 99 
100 //点在直线上的投影
101 Point GetLineProjection(Point P, Point A, Point B){
102     Vector v=B-A;
103     return A+v*(Dot(v,P-A)/Dot(v,v)); //从A移动到投影
104 }
105 
106 //线段相交判定 相交为1 (交点不为端点)
107 bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2){
108     double c1 = Cross(a2-a1,b1-a1);
109     double c2 = Cross(a2-a1,b2-a1);
110     double c3 = Cross(b2-b1,a1-b1);
111     double c4 = Cross(b2-b1,a2-b1);
112     return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0;
113 }
114 //判断一个点是否在一条线段上(用于判断一个端点是否在另一个线段上)
115 //如果c1 c2窦唯0,则线段共线
116 bool OnSegment(Point p, Point a1, Point a2){
117     return dcmp(Cross(a1-p, a2-p))==0 && dcmp(Dot(a1-p, a2-p))<0;
118 }
119 
120 //与圆和球有关的计算问题
121 
122 struct Line{
123     Point p;//线上一点
124     Vector v;//方向向量
125     double ang; //极角,从x正半轴旋转到v所需要的角(弧度)
126     Line(Point p, Vector v):p(p),v(v){ang = atan2(v.y,v.x);}
127     Point point(double t){return p+v*t;};
128     bool operator < (const Line& L) const{ //排序用的比较运算符
129         return ang < L.ang;
130     }
131 };
132 
133 struct Circle{
134     Point c;
135     double r;
136     Circle(Point c, double r):c(c),r(r){}
137     Point point(double a){ //通过圆心角求坐标的函数
138         return Point(c.x+cos(a)*r,c.y+sin(a)*r);
139     }
140 };
141 
142 //直线与圆的交点
143 //sol存放的是交点本身,代码没有清空sol,就很方便:可以反复调用把所有交点放在一个sol里
144 int getLineCircleIntersection(Line L, Circle C, double& t1, double& t2, vector<Point>& sol){
145     double a=L.v.x, b=L.p.x-C.c.x, c=L.v.y, d=L.p.y-C.c.y;
146     double e=a*a+c*c, f=2*(a*b+c*d), g=b*b+d*d-C.r*C.r;
147     double delta = f*f - 4*e*g;//判别式
148     if(dcmp(delta)<0) return 0; //相离
149     if(dcmp(delta)==0){
150         t1=t2=-f/(2*e);
151         sol.push_back(L.point(t1));
152         return 1;
153     }
154     //相交
155     t1 = (-f-sqrt(delta))/(2*e);
156     sol.push_back(L.point(t1));
157     t2 = (-f+sqrt(delta))/(2*e);
158     sol.push_back(L.point(t2));
159     return 2;
160 }
161 
162 //计算向量极角
163 double angle(Vector v){return atan2(v.y,v.x);}
164 
165 //两圆相交
166 int getCircleCircleIntersection(Circle C1, Circle C2, vector<Point>& sol){
167     double d=Length(C1.c-C2.c);
168     if(dcmp(d)==0){
169         if(dcmp(C1.r-C2.r)==0) return -1; //两圆重合
170         return 0;
171     }
172     if(dcmp(C1.r+C2.r-d)<0) return 0; //内含
173     if(dcmp(fabs(C1.r-C2.r)-d)>0) return 0; //外离
174     
175     double a = angle(C2.c-C1.c); //向量C1C2的极角
176     double da = acos((C1.r*C1.r+d*d-C2.r*C2.r)/(2*C1.r*d));
177     //C1C2到C1P1的角
178     Point p1 = C1.point(a-da), p2 = C1.point(a+da);
179     
180     sol.push_back(p1);
181     if(p1==p2)return 1;
182     sol.push_back(p2);
183     return 2;
184 }
185 
186 //过定点作圆切线,v[i]是第i条切线,返回切线条数
187 int getTangents(Point p, Circle C, Vector* v){
188     Vector u = C.c-p;
189     double dist = Length(u);
190     if(dist<C.r) return 0;
191     else if(dcmp(dist-C.r)==0){ //p在圆上,只有一条切线
192         v[0]=Rotate(u,M_PI/2);
193         return 1;
194     }
195     else{
196         double ang = asin(C.r/dist);
197         v[0] = Rotate(u, -ang);
198         v[1] = Rotate(u, +ang);
199         return 2;
200     }
201 }
202 
203 //两圆的公切线
204 int getTangents(Circle A, Circle B, Point* a, Point* b){
205     int cnt=0;
206     if(A.r<B.r){
207         swap(A,B);
208         swap(a,b);
209     }
210     int d2=(A.c.x-B.c.x)*(A.c.x-B.c.x)+(A.c.y-B.c.y)*(A.c.y-B.c.y);
211     int rdiff=A.r-B.r;
212     int rsum=A.r+B.r;
213     if(d2<rdiff*rdiff) return 0; //内含
214     double base = atan2(B.c.y-A.c.y,B.c.x-A.c.x);
215     if(d2==0&&A.r==B.r) return -1; //无限多条切线
216     if(d2==rdiff*rdiff){//内切,一条切线
217         a[cnt]=A.point(base);
218         b[cnt]=B.point(base);
219         cnt++;
220         return 1;
221     }
222     //有外共切线
223     double ang = acos(A.r-B.r)/sqrt(d2);
224     a[cnt] = A.point(base+ang);
225     b[cnt] = B.point(base+ang);
226     cnt++;
227     a[cnt] = A.point(base+ang);
228     b[cnt] = B.point(base-ang);
229     cnt++;
230     if(d2==rsum*rsum){
231         a[cnt]=A.point(base);
232         b[cnt]=B.point(M_PI+base);
233         cnt++;
234     }
235     else if(d2>rsum*rsum){
236         double ang=acos((A.r+B.r)/sqrt(d2));
237         a[cnt]=A.point(base+ang);
238         b[cnt]=B.point(M_PI+base+ang);
239         cnt++;
240         a[cnt]=A.point(base-ang);
241         b[cnt]=B.point(M_PI+base-ang);
242         cnt++;
243     }
244     return cnt;
245 }
246 
247 //三角形外接圆(三点保证不共线)
248 Circle CircumscribedCircle(Point p1, Point p2, Point p3){
249     double Bx = p2.x-p1.x, By = p2.y-p1.y;
250     double Cx = p3.x-p1.x, Cy = p3.y-p1.y;
251     double D = 2*(Bx*Cy-By*Cx);
252     double cx = (Cy*(Bx*Bx+By*By)-By*(Cx*Cx+Cy*Cy))/D+p1.x;
253     double cy = (Bx*(Cx*Cx+Cy*Cy)-Cx*(Bx*Bx+By*By))/D+p1.y;
254     Point p = Point(cx,cy);
255     return Circle(p,Length(p1-p));
256 }
257 //三角形内切圆
258 Circle InscribedCircle(Point p1, Point p2, Point p3){
259     double a = Length(p2-p3);
260     double b = Length(p3-p1);
261     double c = Length(p1-p2);
262     Point p = (p1*a+p2*b+p3*c)/(a+b+c);
263     return Circle(p, DistanceToLine(p, p1, p2));
264 }
265 
266 
267 //二维几何常用算法
268 typedef vector<Point> Polygon;
269 //多边形的有向面积
270 double PolygonArea(Polygon po) {
271     int n = po.size();
272     double area = 0.0;
273     for(int i = 1; i < n-1; i++) {
274         area += Cross(po[i]-po[0], po[i+1]-po[0]);
275     }
276     return area * 0.5;
277 }
278 
279 //点在多边形内判定
280 int isPointInPolygon(Point p, Polygon poly){
281     int wn = 0; //绕数
282     int n = poly.size();
283     for(int i=0;i<n;i++){
284         if(OnSegment(p,poly[i],poly[(i+1)%n])) return -1;//边界上
285         int k = dcmp(Cross(poly[(i+1)%n]-poly[i], p-poly[i]));
286         int d1 = dcmp(poly[i].y-p.y);
287         int d2 = dcmp(poly[(i+1)%n].y-p.y);
288         if(k>0&&d1<=0&&d2>0) wn++;
289         if(k<0&&d2<=0&&d1>0) wn--;
290     }
291     if(wn!=0) return 1;//内部
292     return 0;//外部
293 }
294 
295 //凸包
296 //Andrew算法
297 bool myCmp(Point A, Point B)
298 {
299     if(A.x != B.x)    return A.x < B.x;
300     else return A.y < B.y;
301 }
302 
303 int ConvexHall (Point* p, int n, Point* ch){
304     sort(p,p+n,myCmp); //先比较x坐标,再比较y坐标
305     int m = 0;
306     for(int i=0;i<n;i++){
307         while(m>1&&Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2])<=0) m--;
308         ch[m++] = p[i];
309     }
310     if(n>1)m--;
311     return m;
312 }
View Code
double PolygonArea(Point *p,int n)
{
    double area=0;
    for(int i=1;i<n-1;i++)
        area += Cross(p[i]-p[0],p[i+1]-p[0]);
    return fabs(area)/2;
}
int ConvexHull(Point *p,int n,Point *ch)
{
    sort(p,p+n);
    n=unique(p,p+n)-p;
    int m=0;
    for(int i=0;i<n;i++)
    {
        while(m>1 && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2])<=0) m--;
        ch[m++]=p[i];
    }
    int k=m;
    for(int i=n-2;i>=0;i--)
    {
        while(m>k && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2])<=0) m--;
        ch[m++]=p[i];
    }
    if(n>1) m--;
    return m;
}

 

posted @ 2018-04-17 01:08  摇啊摇啊  阅读(384)  评论(0编辑  收藏  举报