BZOJ4083 : [Wf2014]Wire Crossing
WF2014完结撒花~
首先求出所有线段之间的交点,并在交点之间连边,得到一个平面图。
这个平面图不一定连通,故首先添加辅助线使其连通。
然后求出所有域,在相邻域之间连一条代价为$1$的边。
对起点和终点进行定位,然后BFS求最短路即可。
时间复杂度$O(n^2\log n)$。
#include<cstdio> #include<cmath> #include<set> #include<algorithm> using namespace std; const double eps=1e-12,inf=110000; const int N=20010,M=100010; int n,m,w,q,cnt,cur,i,j,x,idx[N],g[N],v[M],nxt[M],ed,d[N],que[N],h,t,S,T; inline int sgn(double x){ if(fabs(x)<eps)return 0; return x>0?1:-1; } struct P{ double x,y; P(){} P(double _x,double _y){x=_x,y=_y;} P operator+(P b){return P(x+b.x,y+b.y);} P operator-(P b){return P(x-b.x,y-b.y);} P operator*(double b){return P(x*b,y*b);} P operator/(double b){return P(x/b,y/b);} double operator*(P b){return x*b.x+y*b.y;} }a[N],b[N],st[N],en[N],pool[N]; inline bool cmpP(const P&a,const P&b){return !sgn(a.x-b.x)?a.y<b.y:a.x<b.x;} inline double cross(P a,P b){return a.x*b.y-a.y*b.x;} inline bool point_on_segment(P p,P a,P b){ return sgn(cross(b-a,p-a))==0&&sgn((p-a)*(p-b))<=0; } inline int has_intersection(P a,P b,P p,P q){ int d1=sgn(cross(b-a,p-a)),d2=sgn(cross(b-a,q-a)); int d3=sgn(cross(q-p,a-p)),d4=sgn(cross(q-p,b-p)); return d1*d2<0&&d3*d4<0; } inline P line_intersection(P a,P b,P p,P q){ double U=cross(p-a,q-p),D=cross(b-a,q-p); return a+(b-a)*(U/D); } struct E{ int x,y;double o; E(){} E(int _x,int _y){x=_x,y=_y,o=atan2(a[y].x-a[x].x,a[y].y-a[x].y);} }e[M]; bool del[M],ex[M];int from[M],id[N]; struct EV{ double x;int y,t; EV(){} EV(double _x,int _y,int _t){x=_x,y=_y,t=_t;} }ev[M<<1]; inline bool cmpEV(const EV&a,const EV&b){ if(sgn(a.x-b.x))return a.x<b.x; return a.t<b.t; } namespace GetArea{ struct cmp{bool operator()(int a,int b){return e[a].o<e[b].o;}}; set<int,cmp>g[N];set<int,cmp>::iterator k;int i,j,q[M],t; void work(){ for(i=0;i<m+m;i++)if(!del[i]&&!ex[i]){ for(q[t=1]=j=i;;q[++t]=j=*k){ k=g[e[j].y].find(j^1);k++; if(k==g[e[j].y].end())k=g[e[j].y].begin(); if(*k==i)break; } double s=0; for(j=1;j<=t;j++)s+=cross(a[e[q[j]].x],a[e[q[j]].y]),del[q[j]]=1; if(sgn(s)<0)continue; for(cnt++,j=1;j<=t;j++)from[q[j]]=cnt; } } } namespace ScanLine{ struct cmp{ bool operator()(int A,int B){ if(e[A].x==e[B].x)return e[A].o>e[B].o; double x=min(a[e[A].x].x,a[e[B].x].x), yA=(a[e[A].x].y-a[e[A].y].y)*(x-a[e[A].y].x)/ (a[e[A].x].x-a[e[A].y].x)+a[e[A].y].y, yB=(a[e[B].x].y-a[e[B].y].y)*(x-a[e[B].y].x)/ (a[e[B].x].x-a[e[B].y].x)+a[e[B].y].y; return yA>yB; } }; set<int,cmp>T; int cnt,i,j,k,g[M],v[M],nxt[M],ed,vis[N],t,tmp[N]; inline bool cmpC(int x,int y){return a[x].x<a[y].x;} inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;} void dfs(int x){ vis[x]=1; if(a[x].y>a[t].y)t=x; for(int i=g[x];i;i=nxt[i])if(!vis[v[i]])dfs(v[i]); } inline double cal(int A,double x){ return(a[e[A].x].y-a[e[A].y].y)*(x-a[e[A].y].x)/ (a[e[A].x].x-a[e[A].y].x)+a[e[A].y].y; } void connect(){ for(i=0;i<m+m;i++)add(e[i].x,e[i].y); for(i=1;i<=n;i++)if(!vis[i])dfs(t=i),ev[cnt++]=EV(a[t].x,t,2); for(i=0;i<m+m;i++)if(sgn(a[e[i].x].x-a[e[i].y].x)>0){ ev[cnt++]=EV(a[e[i].y].x,i,1); ev[cnt++]=EV(a[e[i].x].x,i,0); } sort(ev,ev+cnt,cmpEV); a[n+1]=P(inf,inf); a[n+2]=P(-inf,inf); e[m+m]=E(n+1,n+2); T.insert(m+m); e[m+m+1]=E(n+2,n+1); n+=2,m++; for(ed=0,i=1;i<=n;i++)g[i]=0; for(i=0;i<cnt;i++){ if(ev[i].t==0)T.erase(ev[i].y); if(ev[i].t==1)T.insert(ev[i].y); if(ev[i].t==2){ a[n+1]=P(ev[i].x,a[ev[i].y].y+eps); a[n+2]=P(ev[i].x-1,a[ev[i].y].y+eps); e[m+m]=E(n+1,n+2); T.insert(m+m); set<int,cmp>::iterator j=T.find(m+m); j--,add(*j,ev[i].y); T.erase(m+m); } } int newm=m+m; for(i=0;i<m+m;i++){ for(cnt=0,j=g[i];j;j=nxt[j]){ if(!sgn(a[v[j]].x-a[e[i].x].x)){ e[newm++]=E(v[j],e[i].x); e[newm++]=E(e[i].x,v[j]); continue; } if(!sgn(a[v[j]].x-a[e[i].y].x)){ e[newm++]=E(v[j],e[i].y); e[newm++]=E(e[i].y,v[j]); continue; } tmp[++cnt]=v[j]; } if(!cnt)continue; ex[i]=ex[i^1]=1; sort(tmp+1,tmp+cnt+1,cmpC); for(k=e[i].y,j=1;j<=cnt;k=n,j++){ a[++n]=P(a[tmp[j]].x,cal(i,a[tmp[j]].x)); e[newm++]=E(k,n); e[newm++]=E(n,k); e[newm++]=E(tmp[j],n); e[newm++]=E(n,tmp[j]); } e[newm++]=E(n,e[i].x); e[newm++]=E(e[i].x,n); } m=newm/2; } void location(){ for(i=cnt=0;i<m+m;i++)if(!ex[i]&&sgn(a[e[i].x].x-a[e[i].y].x)>0){ ev[cnt++]=EV(a[e[i].y].x,i,1); ev[cnt++]=EV(a[e[i].x].x,i,0); } for(i=0;i<q;i++)ev[cnt++]=EV(b[i].x,i,2); sort(ev,ev+cnt,cmpEV); T.clear(); for(i=0;i<cnt;i++){ if(ev[i].t==0)T.erase(ev[i].y); if(ev[i].t==1)T.insert(ev[i].y); if(ev[i].t==2){ a[n+1]=P(ev[i].x,b[ev[i].y].y); a[n+2]=P(ev[i].x-1,b[ev[i].y].y); e[m+m]=E(n+1,n+2); T.insert(m+m); set<int,cmp>::iterator j=T.find(m+m); if(j!=T.begin())j--,id[ev[i].y]=from[*j]; T.erase(m+m); } } } } inline int getid(P o){ int l=1,r=n,mid; while(l<=r){ mid=(l+r)>>1; if(!sgn(o.x-a[mid].x)&&!sgn(o.y-a[mid].y))return mid; if(sgn(o.x-a[mid].x)>0||!sgn(o.x-a[mid].x)&&sgn(o.y-a[mid].y)>0)l=mid+1;else r=mid-1; } } inline void cal0(P a,P b,P c,P d){ if(!has_intersection(a,b,c,d))return; ::a[++n]=line_intersection(a,b,c,d); } inline void cal1(P a,P b,P c,P d){ if(point_on_segment(c,a,b)){pool[++cur]=c;return;} if(point_on_segment(d,a,b)){pool[++cur]=d;return;} if(!has_intersection(a,b,c,d))return; pool[++cur]=line_intersection(a,b,c,d); } inline void add(int x,int y){v[++ed]=y;nxt[ed]=g[x];g[x]=ed;} int main(){ scanf("%d",&w); for(q=2;i<q;i++)scanf("%lf%lf",&b[i].x,&b[i].y); for(i=0;i<w;i++){ scanf("%lf%lf%lf%lf",&st[i].x,&st[i].y,&en[i].x,&en[i].y); a[++n]=st[i]; a[++n]=en[i]; } for(i=0;i<w;i++)for(j=0;j<i;j++)cal0(st[i],en[i],st[j],en[j]); sort(a+1,a+n+1,cmpP); int _=0; for(i=1;i<=n;i++)if(i==1||sgn(a[i].x-a[i-1].x)||sgn(a[i].y-a[i-1].y))a[++_]=a[i]; n=_; for(i=0;i<w;i++){ pool[1]=st[i]; pool[cur=2]=en[i]; for(j=0;j<w;j++)if(i!=j)cal1(st[i],en[i],st[j],en[j]); sort(pool+1,pool+cur+1,cmpP); for(j=1;j<=cur;j++)idx[j]=getid(pool[j]); for(j=1;j<cur;j++)if(idx[j]!=idx[j+1]){ e[m<<1]=E(idx[j],idx[j+1]); e[m<<1|1]=E(idx[j+1],idx[j]); m++; } } ScanLine::connect(); for(i=0;i<m+m;i++)if(!ex[i])GetArea::g[e[i].x].insert(i); GetArea::work(); ScanLine::location(); for(i=0;i<m+m;i++)if(!ex[i])add(from[i],from[i^1]); d[que[h=t=1]=id[0]]=1; while(h<=t)for(i=g[x=que[h++]];i;i=nxt[i])if(!d[v[i]])d[que[++t]=v[i]]=d[x]+1; return printf("%d",d[id[1]]-1),0; }