BZOJ1845 : [Cqoi2005] 三角形面积并
求出所有交点后从左往右扫描线,用每段的中位线去截所有三角形,算出长度并后乘以该段长度即可,时间复杂度$O(n^3\log n)$。
#include<cstdio> #include<cmath> #include<algorithm> using namespace std; const int N=310; const double eps=1e-9,inf=2000000; struct P{ double x,y; P(){x=y=0;} P(double _x,double _y){x=_x,y=_y;} P operator+(P v){return P(x+v.x,y+v.y);} P operator-(P v){return P(x-v.x,y-v.y);} P operator*(double v){return P(x*v,y*v);} P operator/(double v){return P(x/v,y/v);} double operator*(P v){return x*v.x+y*v.y;} }tri[N][4],seg[N]; inline bool cmp(P a,P b){return a.x<b.x;} double px[N*N],ans; int n,i,j,k,l,m; inline int sig(double x){ if(fabs(x)<eps)return 0; return x>0?1:-1; } inline double cross(P a,P b){return a.x*b.y-a.y*b.x;} inline bool has_intersection(P a,P b,P p,P q){ int d1=sig(cross(b-a,p-a)),d2=sig(cross(b-a,q-a)), d3=sig(cross(q-p,a-p)),d4=sig(cross(q-p,b-p)); return d1*d2<0&&d3*d4<0; } inline P line_intersection(P a,P b,P p,P q){ double U=cross(p-a,q-p),D=cross(b-a,q-p); return a+(b-a)*(U/D); } inline double cal(double x){ P D(x,-inf),U(x,inf); int i,m=0; for(i=0;i<n;i++){ int j=0,k=0;double y[2]; for(j=0;j<3;j++)if(has_intersection(tri[i][j],tri[i][j+1],D,U)) y[k++]=line_intersection(tri[i][j],tri[i][j+1],D,U).y; if(k)seg[m++]=P(min(y[0],y[1]),max(y[0],y[1])); } if(m>1)sort(seg,seg+m,cmp); double l=-inf,r=-inf,t=0; for(i=0;i<m;i++){ if(sig(seg[i].x-r)>0)t+=r-l,l=seg[i].x; r=max(r,seg[i].y); } return t+r-l; } int main(){ scanf("%d",&n); for(i=0;i<n;i++){ for(j=0;j<3;j++)scanf("%lf%lf",&tri[i][j].x,&tri[i][j].y); tri[i][3]=tri[i][0]; } for(i=0;i<n;i++)for(j=0;j<3;j++)px[m++]=tri[i][j].x; for(i=0;i<n;i++)for(j=0;j<i;j++)for(k=0;k<3;k++)for(l=0;l<3;l++) if(has_intersection(tri[i][k],tri[i][k+1],tri[j][l],tri[j][l+1])) px[m++]=line_intersection(tri[i][k],tri[i][k+1],tri[j][l],tri[j][l+1]).x; sort(px,px+m); for(i=1;i<m;i++)if(sig(px[i]-px[i-1]))ans+=(px[i]-px[i-1])*cal((px[i]+px[i-1])/2); return printf("%.2f",ans-eps),0; }