BZOJ2280 : [Poi2011]Plot
二分答案,转化为判定能否划分成不超过m段,且对每段求最小圆覆盖得到的圆半径不超过mid。
对于当前的i,倍增出一个j,使得[i,i+(1<<j)-1]区间恰好不满足条件,然后在[i+(1<<(j-1))-1,i+(1<<j)-1]区间二分查找最大的t,使得[i,t]满足条件,然后划为一段。
时间复杂度$O(n\log^2n)$。
#include<cstdio> #include<cstdlib> #include<algorithm> #include<cmath> #define N 100010 using namespace std; int n,m,i,T=50,cnt,ans[N][2]; double l,r,mid,R,eps=1e-10; struct P{double x,y;}b[N],a[N],O; inline double dis(P x,P y){return sqrt((x.x-y.x)*(x.x-y.x)+(x.y-y.y)*(x.y-y.y));} inline P center(P x,P y,P z){ double a1=y.x-x.x,b1=y.y-x.y,c1=(a1*a1+b1*b1)/2,a2=z.x-x.x,b2=z.y-x.y,c2=(a2*a2+b2*b2)/2,d=a1*b2-a2*b1; return (P){x.x+(c1*b2-c2*b1)/d,x.y+(a1*c2-a2*c1)/d}; } inline void cal(int l,int r){ int i,j,k,n=0; for(i=l;i<=r;i++)a[n++]=b[i]; for(i=0;i<n;i++)swap(a[rand()%n],a[i]); for(O=a[0],R=0,i=1;i<n;i++)if(dis(a[i],O)>R+eps)for(O=a[i],R=0,j=0;j<i;j++)if(dis(a[j],O)>R+eps)for(O=(P){(a[i].x+a[j].x)/2,(a[i].y+a[j].y)/2},R=dis(O,a[i]),k=0;k<j;k++)if(dis(a[k],O)>R+eps)O=center(a[k],a[j],a[i]),R=dis(O,a[i]); } inline bool check(double x){ int i,j,l,r,mid,t,now=0; for(i=1;i<=n;i=t+1){ for(j=1;i+(1<<j)-1<=n;j++){ cal(i,i+(1<<j)-1); if(R>x+eps)break; } t=i,l=i+(1<<(j-1))-1,r=i+(1<<j)-1; if(r>n)r=n; while(l<=r){ cal(i,mid=(l+r)>>1); if(R<x+eps)l=(t=mid)+1;else r=mid-1; } if((++now)>m)return 0; } return 1; } inline void fin(double x){ int i,j,l,r,mid,t; for(i=1;i<=n;i=t+1){ for(j=1;i+(1<<j)-1<=n;j++){ cal(i,i+(1<<j)-1); if(R>x+eps)break; } t=i,l=i+(1<<(j-1))-1,r=i+(1<<j)-1; if(r>n)r=n; while(l<=r){ cal(i,mid=(l+r)>>1); if(R<x+eps)l=(t=mid)+1;else r=mid-1; } ans[++cnt][0]=i,ans[cnt][1]=t; } } int main(){ scanf("%d%d",&n,&m); for(i=1;i<=n;i++)scanf("%lf%lf",&b[i].x,&b[i].y); cal(1,n); r=R; if(m>1)while(T--&&r-l>eps)if(check(mid=(l+r)/2))r=mid;else l=mid; printf("%.8f\n",r); fin(r); printf("%d\n",cnt); for(i=1;i<=cnt;i++)cal(ans[i][0],ans[i][1]),printf("%.8f %.8f\n",O.x,O.y); return 0; }