BZOJ1099 : [POI2007]树Drz
首先1与i交换,n与i交换,i与i+1交换的可以$O(n)$算出。
然后只需要考虑i与x交换(1<i,x<n且|i-x|>1)。
设
a[i]=h[i-1]
b[i]=h[i+1]
f[i]=|h[i-1]-h[i]|+|h[i+1]-h[i]|
c[i]=min(a[i],b[i])
d[i]=max(a[i],b[i])
则交换i与x对答案的贡献为
-f[i]-f[x]
+|a[i]-h[x]|+|b[i]-h[x]|
+|h[i]-a[x]|+|h[i]-b[x]|
对第二行进行分类讨论:
1.h[x]<=min(a[i],b[i])
a[i]+b[i]-h[x]*2
2.min(a[i],b[i])<=h[x]<=max(a[i],b[i])
|a[i]-b[i]|
3.h[x]>=max(a[i],b[i])
h[x]*2-a[i]-b[i]
对第三行进行分类讨论:
1.h[i]<=min(a[x],b[x])
a[x]+b[x]-h[i]*2
2.min(a[x],b[x])<=h[i]<=max(a[x],b[x])
|a[x]-b[x]|
3.h[i]>=max(a[x],b[x])
h[i]*2-a[x]-b[x]
所以分9种情况进行讨论,用扫描线+线段树即可完成询问。时间复杂度$O(n\log n)$。
#include<cstdio> #include<algorithm> using namespace std; typedef long long ll; const int N=50010,inf=~0U>>1; int n,m,i,now,h[N],a[N],b[N],c[N],d[N],f[N],loc[N],v[131073],ans[N];ll H[N],B[N],sum; struct Q{int x,l,r,z,t;Q(){}Q(int _x,int _l,int _r,int _z,int _t){x=_x,l=_l,r=_r,z=_z,t=_t;}}q[N*3]; inline bool cmp1(Q a,Q b){return a.x==b.x?a.t<b.t:a.x<b.x;} inline bool cmp2(Q a,Q b){return a.x==b.x?a.t<b.t:a.x>b.x;} inline int getl(ll x){ x=x*n; int l=1,r=n,mid,t; while(l<=r)if(B[mid=(l+r)>>1]>=x)r=(t=mid)-1;else l=mid+1; return t; } inline int getr(ll x){ x=x*n+n-1; int l=1,r=n,mid,t; while(l<=r)if(B[mid=(l+r)>>1]<=x)l=(t=mid)+1;else r=mid-1; return t; } inline int getx(ll x){ int l=1,r=n,mid,t; while(l<=r)if(B[mid=(l+r)>>1]>=x)r=(t=mid)-1;else l=mid+1; return t; } inline int abs(int x){return x>0?x:-x;} inline void up(int&a,int b){if(a>b)a=b;} inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';} void build(int x,int a,int b){ v[x]=inf; if(a==b)return; int mid=(a+b)>>1; build(x<<1,a,mid),build(x<<1|1,mid+1,b); } void change(int x,int a,int b,int c,int p){ if(a==b){v[x]=p;return;} int mid=(a+b)>>1; c<=mid?change(x<<1,a,mid,c,p):change(x<<1|1,mid+1,b,c,p); v[x]=min(v[x<<1],v[x<<1|1]); } void ask(int x,int a,int b,int c,int d){ if(c>d||v[x]>=now)return; if(c<=a&&b<=d){up(now,v[x]);return;} int mid=(a+b)>>1; if(c<=mid)ask(x<<1,a,mid,c,d); if(d>mid)ask(x<<1|1,mid+1,b,c,d); } inline void query(int l,int r,int p){ int x=loc[p-1],y=loc[p+1]; if(x>y)swap(x,y); if(y<l||x>r){ ask(1,1,n,l,r); return; } if(l<=x&&y<=r){ ask(1,1,n,l,x-1); ask(1,1,n,x+1,y-1); ask(1,1,n,y+1,r); return; } if(l<=x){ ask(1,1,n,l,x-1); ask(1,1,n,x+1,r); return; } ask(1,1,n,l,y-1); ask(1,1,n,y+1,r); } void S11(){ for(m=0,i=2;i<n;i++){ q[++m]=Q(c[i],loc[i],0,a[i]+b[i]-h[i]*2-f[i],0); q[++m]=Q(h[i],getr(c[i]),0,a[i]+b[i]-h[i]*2-f[i],i); } for(sort(q+1,q+m+1,cmp2),build(1,1,n),i=1;i<=m;i++){ if(!q[i].t)change(1,1,n,q[i].l,q[i].z); else{ now=inf,query(1,q[i].l,q[i].t); if(now<inf)up(ans[q[i].t],q[i].z+now); } } } void S12(){ for(m=0,i=2;i<n;i++){ q[++m]=Q(c[i],loc[i],0,abs(a[i]-b[i])-h[i]*2-f[i],0); q[++m]=Q(d[i],loc[i],0,0,n); q[++m]=Q(h[i],getr(c[i]),0,a[i]+b[i]-f[i],i); } for(sort(q+1,q+m+1,cmp1),build(1,1,n),i=1;i<=m;i++){ if(!q[i].t)change(1,1,n,q[i].l,q[i].z); else if(q[i].t==n)change(1,1,n,q[i].l,inf); else{ now=inf,query(1,q[i].l,q[i].t); if(now<inf)up(ans[q[i].t],q[i].z+now); } } } void S13(){ for(m=0,i=2;i<n;i++){ q[++m]=Q(d[i],loc[i],0,-h[i]*2-a[i]-b[i]-f[i],0); q[++m]=Q(h[i],getr(c[i]),0,a[i]+b[i]+h[i]*2-f[i],i); } for(sort(q+1,q+m+1,cmp1),build(1,1,n),i=1;i<=m;i++){ if(!q[i].t)change(1,1,n,q[i].l,q[i].z); else{ now=inf,query(1,q[i].l,q[i].t); if(now<inf)up(ans[q[i].t],q[i].z+now); } } } void S21(){ for(m=0,i=2;i<n;i++){ q[++m]=Q(c[i],loc[i],0,a[i]+b[i]-f[i],0); q[++m]=Q(h[i],getl(c[i]),getr(d[i]),abs(a[i]-b[i])-h[i]*2-f[i],i); } for(sort(q+1,q+m+1,cmp2),build(1,1,n),i=1;i<=m;i++){ if(!q[i].t)change(1,1,n,q[i].l,q[i].z); else{ now=inf,query(q[i].l,q[i].r,q[i].t); if(now<inf)up(ans[q[i].t],q[i].z+now); } } } void S22(){ for(m=0,i=2;i<n;i++){ q[++m]=Q(c[i],loc[i],0,abs(a[i]-b[i])-f[i],0); q[++m]=Q(d[i],loc[i],0,0,n); q[++m]=Q(h[i],getl(c[i]),getr(d[i]),abs(a[i]-b[i])-f[i],i); } for(sort(q+1,q+m+1,cmp1),build(1,1,n),i=1;i<=m;i++){ if(!q[i].t)change(1,1,n,q[i].l,q[i].z); else if(q[i].t==n)change(1,1,n,q[i].l,inf); else{ now=inf,query(q[i].l,q[i].r,q[i].t); if(now<inf)up(ans[q[i].t],q[i].z+now); } } } void S23(){ for(m=0,i=2;i<n;i++){ q[++m]=Q(d[i],loc[i],0,-a[i]-b[i]-f[i],0); q[++m]=Q(h[i],getl(c[i]),getr(d[i]),abs(a[i]-b[i])+h[i]*2-f[i],i); } for(sort(q+1,q+m+1,cmp1),build(1,1,n),i=1;i<=m;i++){ if(!q[i].t)change(1,1,n,q[i].l,q[i].z); else{ now=inf,query(q[i].l,q[i].r,q[i].t); if(now<inf)up(ans[q[i].t],q[i].z+now); } } } void S31(){ for(m=0,i=2;i<n;i++){ q[++m]=Q(c[i],loc[i],0,a[i]+b[i]+h[i]*2-f[i],0); q[++m]=Q(h[i],getl(d[i]),0,-a[i]-b[i]-h[i]*2-f[i],i); } for(sort(q+1,q+m+1,cmp2),build(1,1,n),i=1;i<=m;i++){ if(!q[i].t)change(1,1,n,q[i].l,q[i].z); else{ now=inf,query(q[i].l,n,q[i].t); if(now<inf)up(ans[q[i].t],q[i].z+now); } } } void S32(){ for(m=0,i=2;i<n;i++){ q[++m]=Q(c[i],loc[i],0,abs(a[i]-b[i])+h[i]*2-f[i],0); q[++m]=Q(d[i],loc[i],0,0,n); q[++m]=Q(h[i],getl(d[i]),0,-a[i]-b[i]-f[i],i); } for(sort(q+1,q+m+1,cmp1),build(1,1,n),i=1;i<=m;i++){ if(!q[i].t)change(1,1,n,q[i].l,q[i].z); else if(q[i].t==n)change(1,1,n,q[i].l,inf); else{ now=inf,query(q[i].l,n,q[i].t); if(now<inf)up(ans[q[i].t],q[i].z+now); } } } void S33(){ for(m=0,i=2;i<n;i++){ q[++m]=Q(d[i],loc[i],0,h[i]*2-a[i]-b[i]-f[i],0); q[++m]=Q(h[i],getl(d[i]),0,h[i]*2-a[i]-b[i]-f[i],i); } for(sort(q+1,q+m+1,cmp1),build(1,1,n),i=1;i<=m;i++){ if(!q[i].t)change(1,1,n,q[i].l,q[i].z); else{ now=inf,query(q[i].l,n,q[i].t); if(now<inf)up(ans[q[i].t],q[i].z+now); } } } int main(){ for(read(n),i=1;i<=n;i++)read(h[i]); for(i=1;i<n;i++)sum+=abs(h[i]-h[i+1]); if(n>2){ f[1]=abs(h[1]-h[2]),f[n]=abs(h[n]-h[n-1]); for(i=2;i<n;i++){ a[i]=h[i-1],b[i]=h[i+1]; c[i]=min(a[i],b[i]),d[i]=max(a[i],b[i]); f[i]=abs(h[i]-h[i-1])+abs(h[i]-h[i+1]); } for(i=3;i<n;i++){ up(ans[1],abs(h[i]-h[2])+abs(h[1]-h[i-1])+abs(h[1]-h[i+1])-f[1]-f[i]); up(ans[i],abs(h[i]-h[2])+abs(h[1]-h[i-1])+abs(h[1]-h[i+1])-f[1]-f[i]); } for(i=2;i<n-1;i++){ up(ans[n],abs(h[i]-h[n-1])+abs(h[n]-h[i-1])+abs(h[n]-h[i+1])-f[n]-f[i]); up(ans[i],abs(h[i]-h[n-1])+abs(h[n]-h[i-1])+abs(h[n]-h[i+1])-f[n]-f[i]); } up(ans[1],abs(h[1]-h[n-1])+abs(h[n]-h[2])-f[1]-f[n]); up(ans[n],abs(h[1]-h[n-1])+abs(h[n]-h[2])-f[1]-f[n]); if(n>2){ for(i=2;i<n-1;i++){ up(ans[i],abs(h[i-1]-h[i+1])+abs(h[i]-h[i+1])+abs(h[i+2]-h[i])-f[i]-f[i+1]+abs(h[i]-h[i+1])); up(ans[i+1],abs(h[i-1]-h[i+1])+abs(h[i]-h[i+1])+abs(h[i+2]-h[i])-f[i]-f[i+1]+abs(h[i]-h[i+1])); } up(ans[1],abs(h[1]-h[3])-abs(h[2]-h[3])); up(ans[2],abs(h[1]-h[3])-abs(h[2]-h[3])); up(ans[n],abs(h[n]-h[n-2])-abs(h[n-1]-h[n-2])); up(ans[n-1],abs(h[n]-h[n-2])-abs(h[n-1]-h[n-2])); } if(n>4){ for(i=1;i<=n;i++)B[i]=H[i]=(ll)h[i]*n+i-1; sort(B+1,B+n+1); for(i=1;i<=n;i++)loc[i]=getx(H[i]); S11(),S12(),S13(),S21(),S22(),S23(),S31(),S32(),S33(); } } for(i=1;i<=n;i++)printf("%lld\n",sum+ans[i]); return 0; }