BZOJ3672 : [Noi2014]购票
设d[i]表示i到1的距离
f[i]=w[i]+min(f[j]+(d[i]-d[j])*v[i])=w[i]+d[i]*v[i]+min(-d[j]*v[i]+f[j])
对这棵树进行点分治,每次递归时的根为x,重心为rt
如果x==rt,则把树中所有点用x暴力更新,然后递归分治
否则,先递归分治x的那部分子树,将树中每个点按照能走到的最远处的深度从大到小排序
然后将rt到x路径上所有点维护一个凸壳,依次加入直线
对于树中每一个点,在凸壳上二分更新答案
最后再递归分治其它子树
#include<cstdio> #include<algorithm> #define N 200010 typedef long long ll; int n,i,x,g[N],nxt[N<<1],v[N<<1],ok[N<<1],ed=1,son[N],f[N],size,now,fa[N]; int q[N],all[N],t,cnt; ll w[N<<1],ans[N],d[N],W[N],V[N],lim[N],z; inline bool cmp(int x,int y){return lim[x]<lim[y];} inline void add(int x,int y,ll z){v[++ed]=y,w[ed]=z,nxt[ed]=g[x],ok[ed]=1,g[x]=ed;} inline void up(ll&x,ll y){if(x>y)x=y;} inline double pos(int x,int y){return (double)(ans[y]-ans[x])/(double)(d[y]-d[x]);} void findroot(int x,int pre){ son[x]=1;f[x]=0; for(int i=g[x];i;i=nxt[i])if(ok[i]&&v[i]!=pre){ findroot(v[i],x),son[x]+=son[v[i]]; if(son[v[i]]>f[x])f[x]=son[v[i]]; } if(size-son[x]>f[x])f[x]=size-son[x]; if(f[x]<f[now])now=x; } inline void use(int x,int y){if(d[y]>=lim[x])up(ans[x],W[x]+ans[y]-d[y]*V[x]);} inline void deal(int x){ if(!t)return; int l=1,r=t-1,fin=t,mid; while(l<=r){ mid=(l+r)>>1; if((double)V[x]>=pos(q[mid],q[mid+1]))r=(fin=mid)-1;else l=mid+1; } use(x,q[fin]); } void dfs(int x){ W[x]+=d[x]*V[x];lim[x]=d[x]-lim[x]; for(int i=g[x];i;i=nxt[i])if(v[i]!=fa[x])d[v[i]]=d[fa[v[i]]=x]+w[i],dfs(v[i]); } void cal(int x,int pre){ all[++cnt]=x; for(int i=g[x];i;i=nxt[i])if(ok[i]&&v[i]!=pre)cal(v[i],x); } void cal2(int x,int y){ use(x,y); for(int i=g[x];i;i=nxt[i])if(ok[i]&&v[i]!=fa[x])cal2(v[i],y); } void solve(int x){ f[0]=size=son[x],findroot(x,now=0); int rt=now,i; if(rt!=x){ for(i=g[rt];i;i=nxt[i])if(v[i]==fa[rt]){ok[i]=ok[i^1]=0,solve(x);break;} for(cnt=t=0,i=g[rt];i;i=nxt[i])if(ok[i])cal(v[i],rt); for(std::sort(all+1,all+cnt+1,cmp),i=fa[rt];i!=fa[x];i=fa[i])use(rt,i); for(i=rt;cnt;deal(all[cnt--]))for(;i!=fa[x];i=fa[i])if(d[i]>=lim[all[cnt]]){ while(t>1&&pos(i,q[t])>pos(q[t],q[t-1]))t--; q[++t]=i; }else break; for(i=g[rt];i;i=nxt[i])if(ok[i])ok[i^1]=0,solve(v[i]); }else for(i=g[x];i;i=nxt[i])if(ok[i])ok[i^1]=0,cal2(v[i],x),solve(v[i]); } int main(){ scanf("%d%d",&n,&i); for(i=2;i<=n;ans[i++]=1LL<<61)scanf("%d%lld%lld%lld%lld",&x,&z,&V[i],&W[i],&lim[i]),add(x,i,z),add(i,x,z); son[1]=n,dfs(1),solve(1); for(i=2;i<=n;i++)printf("%lld\n",ans[i]); return 0; }