算法:中序遍历
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public boolean isValidBST(TreeNode root) {
Stack<TreeNode> st = new Stack();
long lastval = Long.MIN_VALUE;
while (!st.empty() || root != null) {
while (root != null) {
st.push(root);
root = root.left;
}
root = st.pop();
if (root.val <= lastval) return false;
lastval = (long)root.val;
root = root.right;
}
return true;
}
}
递归版本
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
long lastval = Long.MIN_VALUE;
public boolean isValidBST(TreeNode root) {
if (root == null) return true;
if (isValidBST(root.left)) {
if (root.val > lastval) {
lastval = root.val;
return isValidBST(root.right);
}
}
return false;
}
}
dfs
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
/*
dfs:时间复杂度O(n)
遍历时往上传递当前子树的最小值和最大值;首先遍历左子树,首先递归判断左子树是否合法,
然后判断左子树的最大值是否小于当前节点值,更新最大值最小值,遍历右子树同理。
*/
class Solution {
public:
bool dfs(TreeNode* root, int& maxv, int& minv) {
maxv = minv = root->val;
if (root->left) {
int n_maxv, n_minv;
if (!dfs(root->left, n_maxv, n_minv)) return false;
if (n_maxv >= root->val) return false;
maxv = max(n_maxv, maxv);
minv = min(n_minv, minv);
}
if (root->right) {
int n_maxv, n_minv;
if (!dfs(root->right, n_maxv, n_minv)) return false;
if (n_minv <= root->val) return false;
maxv = max(n_maxv, maxv);
minv = min(n_minv, minv);
}
return true;
}
bool isValidBST(TreeNode* root) {
if (!root) return true;
int maxv, minv;
return dfs(root, maxv, minv);
}
};