Acwing------动态规划
动态规划
背包问题
状态表示
1.集合:所有只考虑前i个物品,且总体积不大于j的所有选法
2.属性:MAX
2.1 去掉k个物品i
2.2 求MAX,f【i - 1】【j - k * v】
2.3 再加回来k个物品i
状态计算:集合的划分
1. 0-1背包(Acwing-2)
朴素做法
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N][N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; ++i) cin >> v[i] >> w[i];
for (int i = 1; i <= n; ++i) {
for (int j = 0; j <= m; ++j) {
f[i][j] = f[i - 1][j];
if (j >= v[i]) f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
}
}
cout << f[n][m] << endl;
return 0;
}
一位数组优化
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; ++i) cin >> v[i] >> w[i];
for (int i = 1; i <= n; ++i) {
for (int j = m; j >= v[i]; --j) {
f[j] = max(f[j], f[j - v[i]]+ w[i]);
}
}
cout << f[m] << endl;
return 0;
}
2.完全背包(Acwing-3)
朴素做法
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N][N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; ++i) cin >> v[i] >> w[i];
for (int i = 1; i <= n; ++i) {
for (int j = 0; j <= m; ++j) {
for (int k = 0; k * v[i] <= j; ++k) {
f[i][j] = max(f[i][j], f[i - 1][j - v[i] * k] + w[i] * k);
}
}
}
cout << f[n][m] << endl;
return 0;
}
优化做法
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N][N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; ++i) cin >> v[i] >> w[i];
for (int i = 1; i <= n; ++i) {
for (int j = 0; j <= m; ++j) {
f[i][j] = f[i -1][j];
if (j >= v[i]) f[i][j] = max(f[i][j], f[i][j - v[i]] + w[i]);
}
}
cout << f[n][m] << endl;
return 0;
}
终极做法
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; ++i) cin >> v[i] >> w[i];
for (int i = 1; i <= n; ++i) {
for (int j = v[i]; j <= m; ++j) {
f[j] = max(f[j], f[j - v[i]] + w[i]);
}
}
cout << f[m] << endl;
return 0;
}
3.多重背包-I(Acwing)
朴素做法
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 110;
int n, m;
int v[N], w[N], s[N];
int f[N][N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; ++i) cin >> v[i] >> w[i] >> s[i];
for (int i = 1; i <= n; ++i) {
for (int j = 0; j <= m; ++j) {
for (int k = 0; k <= s[i] && k * v[i] <= j; ++k) {
f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + w[i] * k);
}
}
}
cout << f[n][m] << endl;
return 0;
}
二进制优化
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 25000, M = 2000;
int n, m, cnt = 0;
int v[N], w[N];
int f[N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; ++i) {
int a, b, s, k = 1;
cin >> a >> b >> s;
while (k <= s) {
cnt ++;
v[cnt] = a * k;
w[cnt] = b * k;
s -= k;
k *= 2;
}
if (s > 0) {
cnt++;
v[cnt] = a * s;
w[cnt] = b * s;
}
}
n = cnt;
for (int i = 1; i <= n; ++i) {
for (int j = m; j >= v[i]; j--) {
f[j] = max(f[j], f[j - v[i]] + w[i]);
}
}
cout << f[m] << endl;
return 0;
}
分组背包(Acwing-9)
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 110;
int n, m;
int v[N][N], w[N][N], s[N];
int f[N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; ++i) {
cin >> s[i];
for (int j = 0; j < s[i]; ++j) {
cin >> v[i][j] >> w[i][j];
}
}
for (int i = 1;i <= n; ++i) {
for (int j = m; j >= 0; --j) {
for (int k = 0; k < s[i]; ++k) {
if (v[i][k] <= j) {
f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);
}
}
}
}
cout << f[m] << endl;
return 0;
}
线性DP
- 递推方程存在线性关系
数字三角形(Acwing-898)
#include <iostream>
using namespace std;
const int N = 510;
int n, INF = 1e9;
int a[N][N], f[N][N];
int main() {
cin >> n;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= i; ++j) {
f[i][j] = -INF;
cin >> a[i][j];
}
}
for (int i = 0; i <= n; ++i) {
for (int j = 0; j <= i + 1; ++j) {
f[i][j] = -INF;
}
}
f[1][1] = a[1][1];
for (int i = 2; i <= n; ++i) {
for (int j = 1; j <= i; ++j) {
f[i][j] = max(f[i - 1][j - 1], f[i - 1][j]) + a[i][j];
}
}
int res = -INF;
for (int i = 1; i <= n; ++i) res = max(res, f[n][i]);
cout << res << endl;
return 0;
}
最长上升子序列(Acwing-895)
#include <iostream>
using namespace std;
const int N = 1010, INF = 1e9;
int n, a[N], f[N];
int main() {
cin >> n;
for (int i = 1; i <= n; ++i) cin >> a[i];
for (int i = 1; i <= n; ++i) {
f[i] = 1;
for (int j = 1; j < i; ++j) {
if (a[j] < a[i]) {
f[i] = max(f[j] + 1, f[i]);
}
}
}
int res = 0;
for (int i = 1; i <= n; ++i) res = max(res, f[i]);
cout << res << endl;
return 0;
}
最长上升子序列-II(Acwing-896)
#include <iostream>
using namespace std;
const int N = 100010;
int n, a[N], f[N];
int main() {
cin >> n;
for (int i = 0; i < n; ++i) cin >> a[i];
int len = 0;
f[0] = -2e9;
for (int i = 0; i < n; ++i) {
int l = 0, r = len;
while (l < r) {
int mid = l + r + 1 >> 1;
if (f[mid] < a[i]) l = mid;
else r = mid - 1;
}
len = max(len, r + 1);
f[r + 1] = a[i];
}
cout << len << endl;
return 0;
}
最长公共子序列(Acwing-897)
#include <iostream>
using namespace std;
const int N = 1010;
int n, m;
char a[N], b[N];
int f[N][N];
int main () {
cin >> n >> m;
scanf("%s%s", a + 1, b + 1);
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
f[i][j] = max(f[i - 1][j], f[i][j - 1]);
if (a[i] == b[j]) f[i][j] = max(f[i][j], f[i - 1][j - 1] + 1);
}
}
cout << f[n][m] << endl;
return 0;
}
最短编辑距离(Acwing-902)
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m;
char a[N], b[N];
int f[N][N];
int main() {
scanf("%d%s", &n, a + 1);
scanf("%d%s", &m, b + 1);
for (int i = 0; i <= m; ++i) f[0][i] = i;
for (int i = 0; i <= n; ++i) f[i][0] = i;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
f[i][j] = min(f[i - 1][j], f[i][j - 1]) + 1;
if (a[i] == b[j]) f[i][j] = min(f[i][j], f[i - 1][j - 1]);
else f[i][j] = min(f[i][j], f[i - 1][j - 1] + 1);
}
}
cout << f[n][m] << endl;
return 0;
}
区间DP
石子合并(Acwing-282)
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 310;
int n, s[N], f[N][N];
int main() {
cin >> n;
for (int i = 1;i <= n; ++i) cin >> s[i];
for (int i = 1;i <= n; ++i) s[i] += s[i - 1];
for (int len = 2; len <= n; ++len) {
for (int i = 1; i + len - 1 <= n; ++i) {
int l = i, r = i + len - 1;
f[l][r] = 1e9;
for (int k = l; k < r; ++k) {
f[l][r] = min(f[l][r], f[l][k] + f[k + 1][r] + s[r] - s[l - 1]);
}
}
}
cout << f[1][n] << endl;
return 0;
}