[做题记录-数据结构] P7446 [Ynoi2007] rfplca
我觉得是个妙妙题但是好像讲课的时候被Qiuls秒掉了qwq。
对序列分块, 然后维护一个\(b_i\)表示第一次跳出块的时候会跳到哪个点。由于祖先只会减小, 所以一个块如果被整体打了超过根号次标记, 就不用重构了, 否则重构。那么一个大小为\(\sqrt n\)的块会重构\(\sqrt n\)次, 每次的操作只会有\(\sqrt n\)的代价, 所以总复杂度也是\(\O(n \sqrt n)\)级别的了。
求lca的时候就像树剖一样跳即可。
#include <bits/stdc++.h>
#include <bits/extc++.h>
using namespace std;
using namespace __gnu_cxx;
using namespace __gnu_pbds;
class Input {
#define MX 1000000
private :
char buf[MX], *p1 = buf, *p2 = buf;
inline char gc() {
if(p1 == p2) p2 = (p1 = buf) + fread(buf, 1, MX, stdin);
return p1 == p2 ? EOF : *(p1 ++);
}
public :
Input() {
#ifdef Open_File
freopen("a.in", "r", stdin);
freopen("a.out", "w", stdout);
#endif
}
template <typename T>
inline Input& operator >>(T &x) {
x = 0; int f = 1; char a = gc();
for(; ! isdigit(a); a = gc()) if(a == '-') f = -1;
for(; isdigit(a); a = gc())
x = x * 10 + a - '0';
x *= f;
return *this;
}
inline Input& operator >>(char &ch) {
while(1) {
ch = gc();
if(ch != '\n' && ch != ' ') return *this;
}
}
inline Input& operator >>(char *s) {
int p = 0;
while(1) {
s[p] = gc();
if(s[p] == '\n' || s[p] == ' ' || s[p] == EOF) break;
p ++;
}
s[p] = '\0';
return *this;
}
#undef MX
} Fin;
class Output {
#define MX 1000000
private :
char ouf[MX], *p1 = ouf, *p2 = ouf;
char Of[105], *o1 = Of, *o2 = Of;
void flush() { fwrite(ouf, 1, p2 - p1, stdout); p2 = p1; }
inline void pc(char ch) {
* (p2 ++) = ch;
if(p2 == p1 + MX) flush();
}
public :
template <typename T>
inline Output& operator << (T n) {
if(n < 0) pc('-'), n = -n;
if(n == 0) pc('0');
while(n) *(o1 ++) = (n % 10) ^ 48, n /= 10;
while(o1 != o2) pc(* (--o1));
return *this;
}
inline Output & operator << (char ch) {
pc(ch); return *this;
}
inline Output & operator <<(const char *ch) {
const char *p = ch;
while( *p != '\0' ) pc(* p ++);
return * this;
}
~Output() { flush(); }
#undef MX
} Fout;
#define cin Fin
#define cout Fout
#define endl '\n'
using LL = long long;
inline int log2(unsigned int x);
inline int popcount(unsigned x);
inline int popcount(unsigned long long x);
template<typename T> struct BinaryQueue;
template<typename T>struct BinaryQueue {
__gnu_pbds :: priority_queue<T, less<T>, binary_heap_tag> q;
void push(T x) { q.push(x); }
void pop() { q.pop(); }
} ;
template <int mod>
class Int {
private :
inline int Mod(int x) { return x + ((x >> 31) & mod); }
inline int power(int x, int k) {
int res = 1;
while(k) {
if(k & 1) res = 1LL * x * res % mod;
x = 1LL * x * x % mod; k >>= 1;
}
return res;
}
public :
int v;
Int(int _v = 0) : v(_v) {}
operator int() { return v; }
inline Int operator =(Int x) { return Int(v = x.v); }
inline Int operator =(int x) { return Int(v = x); }
inline Int operator *(Int x) { return Int(1LL * v * x.v % mod); }
inline Int operator *(int x) { return Int(1LL * v * x % mod); }
inline Int operator +(Int x) { return Int( Mod(v + x.v - mod) ); }
inline Int operator +(int x) { return Int( Mod(v + x - mod) ); }
inline Int operator -(Int x) { return Int( Mod(v - x.v) ); }
inline Int operator -(int x) { return Int( Mod(v - x) ); }
inline Int operator ~() { return Int(power(v, mod - 2)); }
inline Int operator +=(Int x) { return Int(v = Mod(v + x.v - mod)); }
inline Int operator +=(int x) { return Int(v = Mod(v + x - mod)); }
inline Int operator -=(Int x) { return Int(v = Mod(v - x.v)); }
inline Int operator -=(int x) { return Int(v = Mod(v - x)); }
inline Int operator *=(Int x) { return Int(v = 1LL * v * x.v % mod); }
inline Int operator *=(int x) { return Int(v = 1LL * v * x % mod); }
inline Int operator /=(Int x) { return Int(v = v / x.v); }
inline Int operator /=(int x) { return Int(v = v / x); }
inline Int operator ^(int k) { return Int(power(v, k)); }
} ;
using mint = Int<30011>;
const int N = 4e5 + 10;
int n, m, blk, B;
int L[N], R[N], bel[N], cnt[N];
int a[N], b[N];
int lj[N];
/*
b 第一次跳出块以后的祖先是谁
*/
void recalc(int id) {
for(register int i = L[id]; i <= R[id]; i ++) {
a[i] = max(a[i] - lj[id], 1);
b[i] = a[i];
if(b[i] < L[id]) continue;
else b[i] = b[a[i]];
}
lj[id] = 0;
}
void modify(int x, int y, int v) {
int l = bel[x]; int r = bel[y];
if(l == r) {
for(register int i = x; i <= y; i ++) a[i] = max(a[i] - v, 1);
recalc(l); return ;
}
for(register int i = x; i <= R[l]; i ++) a[i] = max(a[i] - v, 1); recalc(l);
for(register int i = L[r]; i <= y; i ++) a[i] = max(a[i] - v, 1); recalc(r);
for(register int i = l + 1; i <= r - 1; i ++) {
cnt[i] ++; lj[i] += v;
if(cnt[i] <= B) recalc(i);
}
}
#define jpb(x) max(1, b[x] - lj[bel[x]])
#define jpa(x) max(1, a[x] - lj[bel[x]])
int lca(int x, int y) {
while(1) {
if(bel[x] < bel[y]) swap(x, y);
if(bel[x] != bel[y]) x = jpb(x);
else {
if(jpb(x) != jpb(y)) x = jpb(x), y = jpb(y);
else break;
}
}
while(x != y) {
if(x > y) x = jpa(x);
else y = jpa(y);
}
return x;
}
int main() {
cin >> n >> m;
for(int i = 2; i <= n; i ++) cin >> a[i];
B = sqrt(n) + 1;
for(int i = 1; i <= n; i ++) bel[i] = (i - 1) / B + 1;
blk = bel[n];
for(int i = 1; i <= blk; i ++) {
L[i] = (i - 1) * B + 1;
R[i] = min(i * B, n);
recalc(i);
}
int lastans = 0;
while(m --) {
int opt; cin >> opt;
if(opt == 1) {
int l, r, x;
cin >> l >> r >> x;
l ^= lastans; r ^= lastans; x ^= lastans;
modify(l, r, x);
}
else {
int u, v;
cin >> u >> v;
u ^= lastans;
v ^= lastans;
lastans = lca(u, v);
cout << lastans << endl;
}
}
return 0;
}
inline int log2(unsigned int x) { return __builtin_ffs(x); }
inline int popcount(unsigned int x) { return __builtin_popcount(x); }
inline int popcount(unsigned long long x) { return __builtin_popcountl(x); }
// Last Year