杨辉三角(Pascal Triangle)的几种C语言实现及其复杂度分析

 

说明 

     本文给出杨辉三角的几种C语言实现,并简要分析典型方法的复杂度。

     本文假定读者具备二项式定理、排列组合、求和等方面的数学知识。

 

 

一  基本概念

     杨辉三角,又称贾宪三角、帕斯卡三角,是二项式系数在三角形中的一种几何排列。此处引用维基百科上的一张动态图以直观说明(原文链接http://zh.wikipedia.org/wiki/杨辉三角):

     从上图可看出杨辉三角的几个显著特征:

     1. 每行数值左右对称,且均为正整数。

     2. 行数递增时,列数亦递增。

     3. 除斜边上的1外,其余数值均等于其肩部两数之和。

     杨辉三角与二项式定理有密切关系,即杨辉三角的第n行(n=0…MAX_ROW)对应二项式(a+b)n展开(Binomial Expansion)的系数集合。例如,第二行的数值1-2-1为幂指数为2的二项式(a+b)2展开形式a2 + 2ab + b2的系数,即

     应用组合公式可推导出杨辉三角的特征1和3,如下:

 

 

 

二  题目要求

     用C语言编程打印出MAX_ROW行杨辉三角数,如(MAX_ROW=5):

1

1    1

1    2    1

1    3    3    1

1    4    6    4    1

1    5   10   10    5    1

…… …… …… ……

     并分析程序所用的加法和乘法次数,比较其复杂度。

 

 

三  算法实现

     因整型数值输出位宽限制,本节实现中将杨辉三角行数限制为10。该限制并不影响算法实现的完整性和表达性。

3.1 基本算法

     直接利用特征3求解杨辉值,即第i行的第j个数等于第i-1行的第j-1个数与第j个数之和,用二维数组形式表达即为a[i][j] = a[i-1][j-1] + a[i-1][j]。

     算法实现如下:

 1 void BasicYangHui(void)
 2 {
 3     int dwRow = 0, dwCol = 0, aTriVal[MAX_ROW][MAX_COL] = {{0}};
 4 
 5     for(dwRow = 0; dwRow < MAX_ROW; dwRow++)
 6     {
 7         aTriVal[dwRow][0] = aTriVal[dwRow][dwRow] = 1;  //若为i行0或i列,则i行j列杨辉值为1
 8     }
 9 
10     for(dwRow = 2; dwRow < MAX_ROW; dwRow++)
11     {
12         for(dwCol = 1; dwCol < dwRow; dwCol++) //否则,i行j列杨辉值为i-1行中第j-1列与第j列值之和
13             aTriVal[dwRow][dwCol] = aTriVal[dwRow-1][dwCol-1] + aTriVal[dwRow-1][dwCol];
14     }
15 
16     //输出杨辉三角值
17     for(dwRow = 0; dwRow < MAX_ROW; dwRow++)
18     {
19         for(dwCol = 0; dwCol <= dwRow; dwCol++)
20         {
21             printf("%5d", aTriVal[dwRow][dwCol]);
22         }
23         printf("\n");
24     }
25 }

     上述程序还可优化,利用对称性折半赋值以使加法计算减半。

 1 void BasicYangHui2(void)
 2 {
 3     int dwRow = 0, dwCol = 0, aTriVal[MAX_ROW][MAX_COL] = {{0}};
 4 
 5     for(dwRow = 0; dwRow < MAX_ROW; dwRow++)
 6     {
 7         aTriVal[dwRow][0] = aTriVal[dwRow][dwRow] = 1;  //若为i行0或i列,则i行j列杨辉值为1
 8     }
 9 
10     for(dwRow = 2; dwRow < MAX_ROW; dwRow++)
11     {
12         for(dwCol = 1; dwCol <= dwRow/2; dwCol++)
13             aTriVal[dwRow][dwCol] = aTriVal[dwRow-1][dwCol-1] + aTriVal[dwRow-1][dwCol];
14         for(dwCol = dwRow-1; dwCol > dwRow/2; dwCol--) //此处必须取大于号,才能保证正确对折
15             aTriVal[dwRow][dwCol] = aTriVal[dwRow][dwRow-dwCol];
16     }
17 
18     //输出杨辉三角值
19     for(dwRow = 0; dwRow < MAX_ROW; dwRow++)
20     {
21         for(dwCol = 0; dwCol <= dwRow; dwCol++)
22         {
23             printf("%5d", aTriVal[dwRow][dwCol]);
24         }
25         printf("\n");
26     }
27 }

     注意,BasicYangHui和BasicYangHui2均先计算杨辉值后统一打印输出。也可边计算边输出:

 1 void BasicYangHui3(void)
 2 {
 3     int dwRow = 0, dwCol = 0, aTriVal[MAX_ROW][MAX_COL] = {{0}};
 4 
 5     for(dwRow = 0; dwRow < MAX_ROW; dwRow++)
 6     {
 7         for(dwCol = 0; dwCol <= dwRow; dwCol++)
 8         {
 9             if((0 == dwCol) || (dwRow == dwCol))
10                 aTriVal[dwRow][dwCol] = 1;
11             else
12                 aTriVal[dwRow][dwCol] = aTriVal[dwRow-1][dwCol-1] + aTriVal[dwRow-1][dwCol];
13             
14             printf("%5d", aTriVal[dwRow][dwCol]);
15         }
16         printf("\n");
17     }
18 }

3.2 递归算法

     利用特征3所对应的组合恒等式,可方便地写出杨辉三角的递归算法。

 1 //求杨辉三角中第i行第j列的值
 2 int CalcTriVal(int dwRow, int dwCol)
 3 {
 4     if((0 == dwCol) || (dwRow == dwCol))
 5         return 1;
 6     else
 7         return CalcTriVal(dwRow-1, dwCol-1) + CalcTriVal(dwRow-1, dwCol);
 8 }
 9 
10 void RecursiveYangHui(void)
11 {
12     int dwRow = 0, dwCol = 0;
13 
14     for(dwRow = 0; dwRow < MAX_ROW; dwRow++)
15     {
16         for(dwCol = 0; dwCol <= dwRow; dwCol++)
17         {
18             printf("%5d", CalcTriVal(dwRow, dwCol));
19         }
20         printf("\n");
21     }
22 }

3.3 迭代算法

     通过组合公式推导,可得等效的迭代表达dwTriVal = dwTriVal * (dwRow-dwCol) / (dwCol+1)。

     相应的算法实现如下:

 1 void BinomialYangHui(void)
 2 {
 3     int dwRow = 0, dwCol = 0, dwTriVal;
 4 
 5     for(dwRow = 0; dwRow < MAX_ROW; dwRow++)
 6     {   //首列直接输出1,否则由二项式系数递推公式求出杨辉值
 7         dwTriVal = 1;
 8         for(dwCol = 0; dwCol <= dwRow; dwCol++)
 9         {
10             printf("%5d",dwTriVal);
11             dwTriVal = dwTriVal * (dwRow-dwCol) / (dwCol+1);
12         }
13         printf("\n");
14     }
15 }

3.4 覆盖算法

     本节将用一维数组代替二维数组,并结合对称性(“折半”),使加法次数和存储空间减半。其示意图如下所示:

 

     图中红色数字为折半边界,同列数字对应一维数组的同一存储位置。数组顺序存储单行杨辉值,只计算边界以左的杨辉值,每次计算后用新行值覆盖前行值。为便于说明,将前行col列值记为a[col],新行col列值记为a’[col],注意a[col]和a’[col]实际上对应同一存储位置。

     可见,计算奇数行(行数从0开始)首列边界处的杨辉值a’[col]时,可将a[col]与a[col-1]值相加后赋值给a’[col];计算偶数行首列边界处的杨辉值a’[col]时,因a[col]位于折半边界以右(其值为0),需将a[col-1]赋予a[col]再与a[col-1]值相加后赋值给a’[col]。自边界处向左依次计算至第1列(0列直接置1),然后正向输出存储的杨辉值(对应边界以左值),再反向输出所存值(对应边界以右值)。继续以上步骤处理下一行。

     考虑到偶数行相对前行边界右移一位,故数组空间大小定义为(MAX_ROW+1)/2。

     算法实现如下。注意,计算row行数据时,数组预存的是row-1行数据。

 1 void EfficientYangHui(void)
 2 {
 3     int dwRow = 0, dwCol = 0, aTriVal[(MAX_ROW+1)/2] = {1};
 4     printf("%5d\n", aTriVal[0]); //先输出首行杨辉值,以便后面各行可采用统一的算法
 5 
 6     for(dwRow = 1; dwRow < MAX_ROW; dwRow++)
 7     {
 8         if(0 == (dwRow % 2)) //偶数行折半处为元素自加,如1-3-0-0为1+3、3+3(而非3+0)
 9             aTriVal[dwRow/2] = aTriVal[dwRow/2-1];
10         for(dwCol = dwRow/2; dwCol >= 1; dwCol--)
11         {
12             aTriVal[dwCol] = aTriVal[dwCol] + aTriVal[dwCol-1];
13         }
14         aTriVal[0] = 1; //首列置1
15 
16         for(dwCol = 0; dwCol <= dwRow/2; dwCol++)
17         {
18             printf("%5d", aTriVal[dwCol]); //并输出aTriVal[dwCol]作为前半行杨辉值
19         }
20         for(dwCol = (dwRow-1)/2; dwCol >= 0; dwCol--)
21         {
22             printf("%5d", aTriVal[dwCol]); //反向输出aTriVal[dwCol],构成后半行杨辉值
23         }
24         printf("\n");
25     }
26 }

     以下给出另一种覆盖算法。该算法未使用折半处理,但使用临时变量暂存待覆盖的右肩值(即示意图中前行同列值),并从首列开始从左至右计算并覆盖。

 1 void EfficientYangHui2(void)
 2 {
 3     int dwRow = 0, dwCol = 0, dwLeft = 0, dwRight = 0;
 4     int aTriVal[MAX_ROW+1] = {1};
 5 
 6     for(dwRow = 0; dwRow < MAX_ROW; dwRow++)
 7     {
 8         dwLeft = 0;
 9         for(dwCol = 0; dwCol <= dwRow; dwCol++)
10         {
11             dwRight = aTriVal[dwCol];
12             aTriVal[dwCol] = dwLeft + dwRight;
13             dwLeft = dwRight;
14             printf("%5d", aTriVal[dwCol]);
15         }
16         printf("\n");
17     }
18 }

 

 

四  复杂度分析

     不同于传统定义的时间复杂度计算,本节将时间复杂度等同于循环体内杨辉值加减乘除运算的次数,即侧重运算效率。基于相应的算法思想,可方便地改编为符合传统时间复杂度期望的实现。

     此外,本节将空间复杂度等同于存储杨辉值的数组大小。因代码中已加以体现,此处不再分析。

     将杨辉三角总行数记为N(亦即MAX_ROW),本节计算BasicYangHui、RecursiveYangHui和BinomialYangHui三种典型算法的时间复杂度。计算主要用到以下公式:

4.1 BasicYangHui复杂度

     主要计算BasicYangHui函数内层循环中加法运算(13行)的执行次数。

     可知,每行杨辉值需要执行dwRow - 1次加法运算。通过求和公式推导总的加法次数为

 

4.2 RecursiveYangHui复杂度

     递归算法的时间复杂度计算稍微复杂,以下借助二项式定理进行推导。

     对于(a+b)n,其展开式第r项的系数满足:

     由此结合递归算法,可得:

     以此类推,将各个杨辉值对应的计算次数写成如下形式:

0

0        0

0        1         0

0        2         2         0

0        3         5         3        0

0        4         9         9        4         0

0        5         14       19       14       5         0

……  ……  ……  ……

     可看出所形成的新三角相当于杨辉三角每个元素减1而成。

     根据二项式系数和公式,可知每行元素和(加法次数)为

     求和得总的加法次数为

 

     可见RecursiveYangHui中采用递归调用算法时间复杂度很高。递归代码在紧凑易懂的同时,牺牲了执行速度(实际上因为大量使用堆栈内存也牺牲了空间)。

4.3 BinomialYangHui复杂度

     主要计算BinomialYangHui函数内层循环中dwTriVal * (dwRow-dwCol) / (dwCol+1)句的运算次数。将其计为一次乘法、一次减法和一次除法(加1运算不计),共三次运算。

     可知,每行杨辉值需要执行(dwRow + 1) * 3次运算。通过求和公式推导总的运算次数为

 

 

五  总结

     对比BasicYangHui、RecursiveYangHui和BinomialYangHui三种算法的复杂度可知:

  • Ÿ时间复杂度:BasicYangHui最低,RecursiveYangHui最高(达到指数级);
  • Ÿ空间复杂度:BinomialYangHui最低,BasicYangHui较高。RecursiveYangHui因消耗大量栈空间故复杂度也较高。 

 

 

如果,您认为阅读这篇博客让您有些收获,不妨点击一下右下角的【推荐】。
如果,您希望更容易地发现我的新博客,不妨点击一下左下角的【+加关注】。
如果,您对我的博客所讲述的内容有兴趣,请继续关注我的后续博客,我是【clover_toeic】。
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利。

 

 

 

 

posted @ 2014-06-05 12:53  clover_toeic  阅读(18896)  评论(0编辑  收藏  举报