Python&R语言-将Python和R整合进一个数据分析流程
命令行脚本
通过Windows 或Linux终端环境命令行运行R和Python脚本类似。要运行的命令被分解成以下部分:
<command_to_run> <path_to_script> <any_additional_arguments>
参数说明
▲<command> 是可执行的命令 (R代码中是 Rscript, Python代码中是Python)
▲<path_to_script>是执行脚本所在的完整或相对文件路径。需要注意的是,如果在路径名中有空格,整个文件路径必须用双引号括起来。
▲<any_additional_arguments>这是空格分隔的参数列表用来解析脚本本身。请注意,这些不能作为字符串传递。
例如,打开一个终端环境并运行R脚本,命令如下:Rscript path/to/myscript.R arg1 arg2 arg3
请注意以下问题:
对于Rscript 和Python 命令必须在你所在的路径中执行,否则你需要提供文件的完整路径。含有空格符的路径名会产生问题,尤其是在Window系统中,因此必须用双引号括起来,这样才被认为是一个单独的文件路径。
R语言中访问命令行参数
上面的例子中,arg1,arg2 和 arg3是用来解析可执行R脚本的参数,可以使用commandArgs函数访问
##myscript.py
#获取命令行参数
myArgs <- commandArgs(trailingOnly = TRUE)
#myArgs是所有参数的特征向量
print(myArgs) print(class(myArgs))
通过设置trailingOnly 为TRUE,myArgs向量中只包含添加到命令行的参数。如果默认设置为FALSE ,myArgs向量中还包含其它参数,比如刚被执行的脚本路径。
Python语言中访问命令行参数
通过下面的命令行执行Python脚本:
python path/to/myscript.py arg1 arg2 arg3
通过在Python脚本中导入sys模块访问arg1, arg2 和arg3参数。 sys模块包含了系统具体的参数和函数,在这里,我们只对 argv的属性感兴趣。这个argv属性是所有被传递到当前正在执行脚本的参数列表。表中的第 一个元素是正在被执行的脚本的完整路径。
# myscript.py
import sys
# 获取命令行参数
my_args = sys.argv
# my_args 是一个列表,其中的第一个元素是执行的脚本
print(type(my_args))
print(my_args)
如果你只希望保留传递到脚本的参数,你可以使用列表切片来选择除了第一个元素以外的所有参数。
# 使用切片,选择除第一个以外的所有元素
my_args = sys.argv[1:]
回顾一下上面的R语言例子,所有的参数需要以字符串的形式传递,因此有必要转换为所期望的数据类型。
将输出结果写入文件。
通过中间文件共享R和Python之间的数据有几种选择。通常,对于普通文本文件,CSVs是很好的表格数据格式,而处理可变长字段或许多嵌套数据结构的非结构化数据(或元数据)形式时,JSON 或YAML是最好的数据格式。
这些都是很常见的数据序列化格式,在R和Python中已存在相应的语法解析器。
在R语言中推荐下面的程序包:
● 对于CSV文件,使用readr
● 对于JSON文件,使用jsonlite
● 对于YAML文件,使用yaml
Python中推荐:
○ 对于CSV文件,使用csv
○ 对于JSON文件,使用json
○ 对于YAML文件,使用PyYAML
csv 和json模块是Python标准的库文件,是Python内置模块,而PyYAML需要额外安装程序包。所有的R程序包均需要安装。
总结
R和Python之间的数据传递可以通过单一传递途径进行:
△使用命令行传递参数
△使用常见的结构化文本文件传递数据
然而,在某些实例中,需要将文本文件作为中间文件存储在本地,这不仅很麻烦而且还影响性能。接下来,我们将讨论如何在R和Python中直接调用并在内存中输出。
命令行执行和执行子进程
为了更好地理解在执行子进程的时候发生了什么,值得重新考虑当命令行运行一个Python 或 R进程中更多的细节。在运行下面的命令时,启动了一个新的 Python 进程执行该脚本。
在执行过程中,任何被输出到标准输出和标准错误流的数据会返回到控制台显示。最常见的实现方式是通过Python中的一个内置函数print()或 是 R中的函数 cat()和 print(),它们将给定字符串的写入标准输出流。一旦脚本执行完毕,Python进程随即关闭。
在这种方式下运行命令行脚本是有用的,但如果希望用这个方法执行多个连续却相互独立脚本时,就变得繁琐,并且容易出错。然而,这可能让一个 Python或R进程直接去执行另一个类似的命令。这样有好处,即从一个Python父进程启动一个R中的子进程去运行特定的脚本,进而完成分析。一旦R 脚本运行完毕,R中子进程的输出不是被传到控制台,而是返回到父进程中。使用这种方法除去了手动单独执行命令行的步骤。
为了说明一个进程的执行是由另一个进程引起的,我们将会用两个简单的例子:一个是Python调用R,另一个是R调用Python。我们人为降低了每个案例中分析结果的重要性,以便把重点放在机器是如何的实现的过程上。
R脚本范例
我们简单的R脚本例子要从命令行获取一系列数字并返回最大值。
# max.R
# 获取命令行参数
myArgs <- commandArgs(trailingOnly = TRUE)
# 转换成数字类型
nums = as.numeric(myArgs)
# cat将把结果写入标准输出流
cat(max(nums))
在Python中执行R脚本
我们需要利用子进程的模块,也就是标准库的一部分,来实现从Python中进行调用。我们将使用函数check_output 来调用 R 脚本,执行命令并存储标准输出的结果。
想要在Python中调用R来执行 max.R脚本,首先要建立要运行的命令。在Python中的形式以一个字符串列表表示,其相应的元素如下所示:[‘’, ‘’, ‘arg1’ , ‘arg2’, ‘arg3’, ‘arg4’]
下面代码是运行在Python中调用R的一个例子:
# run_max.py
import subprocess
# 定义命令和参数
command = ‘Rscript’
path2script = ‘path/to your script/max.R’
# args变量的值是一个列表
args = [’11’, ‘3’, ‘9’, ’42’]
#建立子进程命令
cmd = [command, path2script] + args
# check_output会执行命令并存储结果
x = subprocess.check_output(cmd, universal_newlines=True)
print(‘The maximum of the numbers is:’, x)
参数 universal_newlines=True 告诉 Python 把返回的输出结果解释为文本字符串,并处理 Windows 和 Linux 的换行字符。如果省略了这个,则输出结果会被作为一个字节的字符串返回,同时在进行任何字符串进一步操作之前必须调用x.decode()来解码成文本。
Python脚本范例
在我们简单的 Python 脚本中,我们将给定的字符串(第一个参数)拆分为基于所提供的字符串模式的多个子字符串 (第二个参数)。然后,结果以每行一个子字符串的形式输出到控制台。
# splitstr.py
import sys
# 获取传入的参数
string = sys.argv[1]
pattern = sys.argv[2]
#执行分割
ans = string.split(pattern)
#把所产生的元素列表合成一个新命令行
# 分割字符串并打印
print(‘\n’.join(ans))
在R中调用Python
当用R执行子进程时,建议使用 R 的system2函数来执行并获取输出。这是因为内置的系统函数跨平台不兼容,非常难使用。
建立要执行的命令是类似于上面的 Python 例子,然而system2 期望命令根据它的参数被分解开来。此外,这些参数首先必须总是正在执行的脚本的路径。
最后一个困难可能是R脚本路径名称中的空格处理引起的。解决这一问题最简单的方法是为全路径名称加上双引号,然后用单引号封装此字符串,这样,R保留参数本身的双引号。
下面的代码中,给出在R 中执行 Python 脚本的实例。
# run_splitstr.R
command = “python”
#注意在字符串中的单引号和双引号(如果路径名中有空格,这是必须的)
path2script='”path/to your script/splitstr.py”‘
# 设置args成向量
string = “3523462—12413415—4577678—7967956—5456439”
pattern = “—”
args = c(string, pattern)
# 把脚本路径加入,成为第一个arg参数
allArgs = c(path2script, args)
output = system2(command, args=allArgs, stdout=TRUE)
print(paste(“The Substrings are:\n”, output))
为了获取标准输出中的特征向量(每个元素一行),stdout=TRUE 必须在system2中具体说明,不然返回的只是退出状态。当stdout=TRUE时,退出状态存储在一个名为“状态”的属性中。
通过子进程调用,可以将Python和R整合到一个应用程序中。这允许一个父进程调用另一个进程作为子进程,并获取任何输出到标准输出的结果。
来源:大数据文摘
©哈尔滨商业大学 银河统计工作室
银河统计工作室成员由在校统计、计算机部分师生和企业数据数据分析师组成,维护和开发银河统计网和银河统计博客(技术文档)。专注于数据挖掘技术研究和运用,探索统计学、应用数学和IT技术有机结合,尝试大数据条件下新型统计学教学模式。