线程池原理

下面我将围绕这几个问题,来讨论一下线程池。

  1. 线程池是什么?
  2. 为什么使用线程池,或者说使用线程池的好处是什么?
  3. 线程池怎么使用?
  4. 线程池的原理是什么,它怎么做到重复利用线程的?

1. 是什么

线程池(Thread Pool)是一种基于池化思想的管理线程的工具,它内部维护了多个线程,目的是能重复利用线程,控制并发量,降低线程创建及销毁的资源消耗,提升程序稳定性。

2. 为什么

使用线程池的好处:

  1. 降低资源消耗:重复利用已创建的线程,降低线程创建和销毁造成的损耗。
  2. 提高响应速度:任务到达时,无需等待线程创建即可立即执行。
  3. 提高线程的可管理性:线程是稀缺资源,如果无限制创建,不仅会消耗系统资源,还会因为线程的不合理分布导致资源调度失衡,降低系统的稳定性。使用线程池可以进行统一的分配、调优和监控。

线程池解决的核心问题就是资源管理问题,在并发场景下,系统不能够确定在任意时刻,有多少任务需要执行,有多少资源需要投入。这种不确定性将带来以下若干问题:

  1. 频繁申请/销毁资源和调度资源,将带来额外的消耗,可能非常巨大。
  2. 对资源无限申请缺少抑制手段,易引发系统资源耗尽的风险。
  3. 系统无法合理管理内部的资源分布,会降低系统的稳定性。

线程池这种基于池化思想的技术就是为了解决这类问题。

3. 怎么用

线程池的的核心实现类是ThreadPoolExecutor,调用execute或者submit方法即可开启一个子任务。

public class ThreadPoolTest {

    private static ThreadPoolExecutor poolExecutor =
            new ThreadPoolExecutor(1, 1, 5, TimeUnit.SECONDS, new LinkedBlockingQueue<>(1));

    public static void main(String[] args) throws ExecutionException, InterruptedException {
        Runnable runnableTask = () -> System.out.println("runnable task end");
        poolExecutor.execute(runnableTask);

        Callable<String> callableTask = () -> "callable task end";
        Future<String> future = poolExecutor.submit(callableTask);
        System.out.println(future.get());
    }
}

ThreadPoolExecutor的核心构造器有7个参数,我们来分析一下每个参数的含义:

public ThreadPoolExecutor(int corePoolSize,
                          int maximumPoolSize,
                          long keepAliveTime,
                          TimeUnit unit,
                          BlockingQueue<Runnable> workQueue,
                          ThreadFactory threadFactory,
                          RejectedExecutionHandler handler) {
	// 省略...
}
  • corePoolSize:线程池的核心线程数。线程池中的线程数小于corePoolSize时,直接创建新的线程来执行任务。
  • workQueue:阻塞队列。当线程池中的线程数超过corePoolSize,新任务会被放到队列中,等待执行。
  • maximumPoolSize:线程池的最大线程数量。
  • keepAliveTime:空闲线程的存活时间。空闲线程就是当池子中的一个线程从阻塞队列中取不到任务了,在等待了keepAliveTime之后还是没取到任务,就会被回收。
  • unitkeepAliveTime的时间单位。
  • threadFactory:创建线程的工厂。默认的线程工厂会把提交的任务包装成一个新的任务。
  • handler:拒绝策略。当线程池的workQueue已满且线程数达到最大线程数时,新提交的任务执行对应的拒绝策略。

JDK也提供了一个快速创建线程池的工具类Executors,它提供了多种创建线程池的方法,但通常不建议使用Executors来创建线程池,因为它提供的很多工具方法,要么使用的阻塞队列没有设置边界,要么是没有设置最大线程的上限。任务一多容易发生OOM。实际开发应该根据业务自定义线程池。

4. 源码剖析

4.1. execute

线程池的核心运行机制在于execute方法,所有的任务调度都是通过execute方法完成的。

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();

    int c = ctl.get();
    if (workerCountOf(c) < corePoolSize) { // (1)
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
	if (isRunning(c) && workQueue.offer(command)) { // (2)
        int recheck = ctl.get();
        // 重新检查状态,如果是非运行状态,接着执行队列删除操作,然后执行拒绝策略
        if (! isRunning(recheck) && remove(command))
            reject(command);
        // 如果是因为remove(command)删除队列元素失败,再判断池中线程数量
        // 如果池中线程数为0则新增一个任务为null的非核心线程
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    else if (!addWorker(command, false)) // (3)
        reject(command);
}

透过execute方法的3个if判断,可以把它的逻辑梳理为3个部分:

  1. 第一个if:如果线程数量小于核心线程数,则创建一个线程来执行新提交的任务。
  2. 第二个if:如果线程数量大于等于核心线程数,则将任务添加到该阻塞队列中。
  3. else if:线程池不是运行状态,或者添加到队列失败即队列满了,则创建一个非核心线程执行新提交的任务。如果非核心线程创建失败就执行拒绝策略。

4.2. addWorker

execute中的核心逻辑要看addWoker方法,它承担了核心线程和非核心线程的创建。addWorker方法前半部分代码用一个双重for循环确保线程池状态正确,后半部分的逻辑是创建一个线程对象Worker,添加到存储线程对象的HashSet中,然后使用Worker线程执行任务的过程。

Worker是对提交进来的线程的封装,创建的worker会被添加到一个HashSet,线程池中的线程都维护在这个名为workersHashSet中并被线程池所管理。

前面说到,Worker本身也是一个线程对象,它实现了Runnable接口,在addWorker中会启动一个新的任务,所以我们要看它的run方法,而run方法的核心逻辑是runWorker方法。

final void runWorker(Worker w) {
    // ...
    try {
        while (task != null || (task = getTask()) != null) {
            // ...
            try {
                try {
                    task.run(); // 执行普通的run方法
                } finally {
                    task = null; // task置空
                }
            }
        }
    } finally {
        processWorkerExit(w, completedAbruptly); // 回收空闲线程
    }
}

可以看到runWorker方法中有一个while循环,循环执行taskrun()方法,这里的task就是提交到线程池的任务,它对当成了普通的对象,执行完task.run(),最后会把task设置为null

再看循环的条件,已知task会为空,所以我们再看看(task = getTask()) != null这个条件,如果getTask() == null则跳出循环执行processWorkerExit方法,processWorkerExit方法的作用是回收空闲线程。

4.3. getTask

很多答案都在getTask()方法中。

private Runnable getTask() {
    boolean timedOut = false; // Did the last poll() time out?

    for (; ; ) { // (1)
        // 校验线程池状态的代码,先省略...
        
        int wc = workerCountOf(c);

        // Are workers subject to culling?
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; // (2)

        if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
            if (compareAndDecrementWorkerCount(c)) // 线程数减1
                return null; // 这里是中断外层while循环的时机
            continue;
        }

        try {
            Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take(); // (3)
            if (r != null)
                return r; // 取到值了就在外层的while循环中执行任务
            timedOut = true; // 否则就标记为获取队列任务超时
        } catch (InterruptedException retry) {
            timedOut = false;
        }
    }
}

结合(1)、(3)这两个地方可以看出,getTask()方法是一个无限循环,不断从阻塞队列中取任务,取到了任务就返回,到外层runWorker方法中,执行这个任务的run方法。即线程池通过启动一个Worker子线程来执行提交进来的任务,并且一个Worker线程会执行多个任务

我们再看看getTask()何时返回null,因为返回null才可以看下一步的processWorkerExit方法。

getTask()返回null主要看timed && timedOut这个条件。变量值timedtrue的条件是:允许核心线程超时或者线程数大于核心线程数。timedOut变量为true的条件是从workQueue为空了,取不到任务了,但是这个前提是timed == true,执行workQueue.poll的时候,因为workQueue.poll方法获取任务最多等待keepAliveTime的时间,超过这个时间获取不到就返回null,而workQueue.take()方法获取不到任务会一直等待!

因此,在核心线程不会超时的情况下,如果池中的线程数小于核心线程数,这个getTask()会一直循环下去,这就是在这种情况下线程池不会自动关闭的原因!反之,在核心线程不会超时的情况下,如果池中的线程数超过核心线程数,才会对多余的线程回收。如果allowCoreThreadTimeOut == true,即核心线程也能超时,当阻塞队列为空,所有Worker线程都会被回收。

ThreadPoolExecutor的注释说,当池中没有剩余线程,线程池会自动关闭。

A pool that is no longer referenced in a program AND has no remaining threads will be shutdown automatically

但我也没找到证据,没看到哪里显式调用shutdown(),但确实会自动关闭。

4.4. processWorkerExit

某个Worker线程在执行getTask()获取不到任务后,会执行processWorkerExit方法回收线程。从HashSetremoveWorker线程对象。可见线程销毁线程的方式是删除线程引用,让 JVM 自动回收。

private void processWorkerExit(Worker w, boolean completedAbruptly) {
    // ...
    try {
        workers.remove(w);
    }
    ...
}

5. 原理总结

最后我们回到最初的问题,线程池的原理是什么,线程池怎么做到重复利用线程的?

  1. 线程池通过维护一组叫Worker的线程对象来处理任务。
  2. 已有线程数小于核心线程数时,一个任务开启一个Worker线程,超过核心线程数,新任务加到阻塞队列。
  3. 一个Worker线程启动后,除了执行第一次任务之外,还会不断从阻塞队列中消费任务。
  4. 如果队列里没任务了,Worker线程会一直轮询,不会退出,以此达到重复利用线程的目的;只有池中线程数超过核心线程数时才退出轮询,然后回收多余空闲线程,其他核心线程依然轮询。
  5. 如果核心线程也会超时,那么在队列中无任务时所有线程都会被回收,最后线程池自动关闭。
  6. 即一个Worker线程会处理多个任务,默认情况下核心线程会一直轮询队列,不会退出。

6. 拒绝策略

拒绝策略的目的是保护线程池,避免无节制新增任务。JDK使用RejectedExecutionHandler接口代表拒绝策略,并提供了4个实现类。线程池的默认拒绝策略是AbortPolicy,丢弃任务并抛出异常。实际开发中用户可以通过实现这个接口去定制拒绝策略。

posted @ 2023-06-13 13:59  yfhu  阅读(132)  评论(0编辑  收藏  举报