[DeeplearningAI笔记]序列模型2.7负采样Negative sampling

5.2自然语言处理

觉得有用的话,欢迎一起讨论相互学习~

我的微博我的github我的B站

吴恩达老师课程原地址

2.7 负采样 Negative sampling

Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality[C]// International Conference on Neural Information Processing Systems. Curran Associates Inc. 2013:3111-3119.

  • skip-gram模型可以构造一个监督学习任务,把上下文映射到目标词上,以学习一个实用的词嵌入,但是他的缺点是softmax计算起来很慢。本节将会介绍了一个经过优化的学习问题叫做 负采样,其能够做到和 skip-gram 相似的功能但是使用起来更加高效。

样本生成方法

  • 例句: I want a glass of orange juice to go along with my cereal 构造一个新的监督学习问题,给定一对单词 orange 和 juice ,预测这是否是一对 上下文词-目标词 (context-target) ,在这个样本中,orange 和 juice 就是一个正样本。 然而对于 orange 和 king 就是一个负样本。
    • 正样本 的生成是采样得到一个上下文词和一个目标词。其中先在句中随机均匀的选取一个单词作为上下文词。然后在其左右两边一定词距内随机选择一个单词作为目标词。 并且将 标签 设置为1.
    • 负样本 的生成是使用和正样本一样的上下文词,然后从字典中随机选取一个单词构成一个组合。并且将 标签 设置为0. 其中同一 上下文词 生成 K个 负样本
context word target
orange juice 1
orange king 0
orange book 0
orange the 0
orange of 0
  • 注意:正负样本 的区别仅取决于单词对的来源,即是 of 也在 orange 的设定词距之内,但是作为随机从字典中选取的单词, of - orange 单词对仍然被标记为负样本。
  • 在本次提出的算法中 输入数据x 将被设定为 context-word 的单词对,预测结果y 将被设置为 target 算法的目的即是区分 样本采样的来源
  • 论文作者推荐,小数据集的话 K 被设置为5-20, 而对于较大的数据集, K 被设置为2-5.即数据集越小 K 值被设定的越大。

模型学习原理

  • Skip-grams 中softmax函数定义:

P(target|content)=eθtTecj=110000eθjTec

  • 本节算法定义 输入Context为c,Word为t,定义输出Target为y
context word target
c t y
x1 x2 y
orange juice 1
orange king 0
orange book 0
orange the 0
orange of 0
  • 损失函数 定义为给定 样本单词对 的情况下,y=1 的概率:
    • 使用ec表示context的词嵌入向量 其中θt表示每个样本对应的参数.
    • P(y=1|c,t)=σ(θtTec)

    • 对于每个正样本都有 K 个负样本来训练一个类似logisitic回归的模型。

神经网络算法流程

  1. 如果输入词是 orange ,即词典中的第6257个词,将其使用one-hot向量表示 o6257,
  2. 再传递给E(词嵌入向量矩阵),通过两者相乘得到 orange 的嵌入向量 e6357
  3. e6357是一个1W维(字典中总单词数量)的向量,可以看成是1W个可能的logistic回归分类问题,其中一个是用来判断目标词是否是 juice 的分类器,当然也有用来判断 king,book,the... 等词汇是否是目标词的分类器。但是每次迭代不都是训练所有的样本, 每次迭代只会训练一个正样本和随机选取的 K 个负样本
  • 此算法将需要计算10000个维度的softmax问题转化为10000个二分类问题,每一个都易于计算,每次迭代要做的只是训练其中的 K+1 个样本,其中一个正样本和随机选取的同一个Context的 K 个负样本。
  • 此算法被称为 负采样 , 因为在挑选一个 正样本 的同时,随机生成 K个负样本

负样本采样方法

  • 仅考虑单词在 语料库 中出现的频率,会导致负样本中 the, of, and ... 等介词出现的频率过高
  • 仅考虑单词在 词汇表 中出现的频率,即在 词汇表 中随机采样,分母是词汇表中的总词数,这样采样十分没有代表性。
  • 论文提出采样公式为:

P(wi)=f(wi)3/4j=110000f(wj)3/4

其中f(wi)表示单词在语料库中的词频。

posted @   WUST许志伟  阅读(3360)  评论(2编辑  收藏  举报
编辑推荐:
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 探究高空视频全景AR技术的实现原理
· 理解Rust引用及其生命周期标识(上)
· 浏览器原生「磁吸」效果!Anchor Positioning 锚点定位神器解析
阅读排行:
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· 记一次.NET内存居高不下排查解决与启示
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET10 - 预览版1新功能体验(一)
历史上的今天:
2017-08-29 tf.train.shuffle_batch函数解析
点击右上角即可分享
微信分享提示