[DeeplearningAI笔记]序列模型1.10-1.12LSTM/BRNN/DeepRNN
5.1循环序列模型
觉得有用的话,欢迎一起讨论相互学习~
1.10长短期记忆网络(Long short term memory)LSTM
Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8):1735-1780.
门控循环神经网络单元GRU
长短期记忆网络LSTM
- 记忆细胞更新:
- 更新门:
- 遗忘门--遗忘门在GRU中相当于,在LSTM中使用专用的代替:
- 输出门:
- 记忆细胞:
1.11双向神经网络Bidirectional RNN
- 这个模型可以让你在序列的某处不仅可以获取之前的信息,还可以获取未来的信息
- 在这个句子中,根据原始的模型,并不能区别泰迪熊和美国前总统泰迪的区别。必须要使用到Teddy词后的信息才能识别出Teddy的意义。无论这些单元是标准的RNN块还是GRU单元或者是LSTM单元,前向的结构都不能够识别出Teddy的意义。
- 双向神经网络结构如下图所示:
这样的网络构成了一个无环图,其中信息的流向,如下动图中显示:
1.12深层循环神经网络Deepl RNNs
- 通过计算的值来了解RNN的计算过程,有两个输入,一个是从下面传上来的,一个是从左边传进来的输入
- 对于普通的神经网络,也许可以经常看见100层神经网络,但是对于RNN来说,有三层就已经有很多参数了,因为有时间的维度,RNN会变得相当大,一般很少会看见RNN堆叠到很深的层次。
- 但是深层次的预测却经常见到,即第三层的输出会连接上更深的层,但是水平方向上却不相连
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)