[DeeplearningAI笔记]卷积神经网络2.3-2.4深度残差网络

4.2深度卷积网络

觉得有用的话,欢迎一起讨论相互学习~

我的微博我的github我的B站

吴恩达老师课程原地址
参考文献
[残差网络]--He K, Zhang X, Ren S, et al. Deep Residual Learning for Image Recognition[J]. 2015:770-778.

2.3残差网络Residual Networks(ResNets)

  • 非常非常深的网络是很难训练的,因为存在梯度消失和梯度爆炸的问题。使用跳远连接(skip connections)
    • 它可以从某一网络层获取激活,然后迅速反馈给另外一层,甚至是神经网络的更深层,可以利用跳远连接构建能够训练深度网络的ResNets

Residual block

  • Residual Networks残差网络由残差块构成,对于一个“普通的神经网络层的结构”而言,神经层a[l]a[l+1]再到a[l+2]
    网络的主路径"Main Path"可表示为:
  • 但是对于残差网络,a[l]可以拷贝到网络的深层,可以直接在ReLU非线性激活函数前加上a[l]。这被称为是"Short cut",不再沿着主路径传递。即原始公式中的a[l+2]=g(z[l+2])被替代为a[l+2]=g(z[l+2]+a[l]),也就是说加上的这个a[l]产生了一个残差块。
  • "跳远连接(skip connection)"就是指a[l]跳过一层或者好几层,从而将信息传递给神经网络的更深层。
  • ResNet的发明者认为使用残差块能够训练更深的神经网络,所以构建一个ResNet网络就是通过将很多这样的残差块堆积在一起,形成一个深度神经网络。

Residual Networks(ResNets)残差网络构造方法与优势

对于一个"Plain Network普通网络",把它变为ResNet的方法是加上所有的跳远连接(skip connections).每两层增加一个跳远连接构成一个残差块。如图所示,五个残差块连接在一起构成一个残差网络。

  • 理论上说越深的神经网络应该会取得更好的结果,但是实际上对于普通网络随着神经网络网络层数的增加,训练的误差会先下降再上升。因为随着网络层数的增加,优化算法会更加难以训练网络。
  • 但是ResNets不一样,即使网络再深,训练的表现却不错,错误会更少。就算网络的深度达到了1000层也会取得不错的结果。这证明ResNet在训练深度网络方面非常有效。

2.4残差网络Residual Networks(ResNets)为什么有用

残差网络在训练集上的效果

  • 通常情况下,一个网络深度越深,它在训练集上训练集上训练网络的效率有所减弱。
  • 假设网络结构如下图所示,其中BigNN表示一个很大很深的神经网络模型,并且使用ReLU函数作为激活函数,且所有ReLU函数的输入值都是非负值。

    有如下计算式:

a[l+2]=g(z[l+2]+a[l])=g(w[l+2]a[l+1]+b[l+2]+a[l])

  • 注意,如果我们使用了L2正则化,则会使公式中的w权值相应的减少。
  • 这里设w和b均为零值,因为使用ReLU函数作为激活函数,并且激活函数的输入值是非负值则a[l+2]=g(a[l])=a[l]
  • NG认为残差网络起作用的主要原因是:这些残差块学习恒等函数非常容易,你能确定网络性能不会受到影响,很多时候甚至可以提高效率,至少效率不会降低。

残差块维度

  • 对于残差块的跳跃连接的维度大小,因为残差块的设计中使用了相当多的“SAME”模式的卷积方式所以可以实现$$z{[l+2]}+a的跳跃连接的操作$$即"SAME"卷积模式保持了维度。
  • 但是如果a[l+2]a[l]的维度不一样,例如a[l+2]为256,a[l]的维度为128,则在a[l]前乘上一个可学习的变量Ws,其中Ws维度为256128以保持维度的一致。

Plain网络(普通网络)加上ResNet单元

  • 其中卷积层使用“SAME”卷积模式,保持特征图的维度信息即特征图的长和宽,但是对于残差块中有池化层的情况,则需要使用Ws调整维度,使跳跃连接的前后层可以保持一致的维度使其可以相加。
posted @   WUST许志伟  阅读(2944)  评论(0编辑  收藏  举报
编辑推荐:
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
阅读排行:
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)
点击右上角即可分享
微信分享提示