Tensorboard教程:显示计算图中节点信息
Tensorboard显示计算图节点信息
觉得有用的话,欢迎一起讨论相互学习~
参考文献
强烈推荐Tensorflow实战Google深度学习框架
实验平台:
Tensorflow1.4.0
python3.5.0
- TensorFlow不仅可以展示计算图的结构,还可以展示TensorFlow 计算图上每个节点的基本信息以及运行时消耗的时间和空间。这可以帮助更加有针对性地优化TensorFlow 程序,使得整个程序的运行速度更快。使用TensorBoard 可以非常直观地展现所有TensorFlow 计算节点在某一次运行时所消耗的时间和内存。
with tf.Session() as sess:
tf.global_variables_initializer().run()
for i in range(TRAINING_STEPS):
xs, ys = mnist.train.next_batch(BATCH_SIZE)
if i%1000 == 0:
# 配置运行时需要记录的信息。
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
# 运行时记录运行信息的proto。
run_metadata = tf.RunMetadata()
# 将配置信息和记录运行信息的proto传入运行的过程,从而记录运行时每一个节点的时间空间开销信息
_, loss_value, step = sess.run(
[train_op, loss, global_step], feed_dict={x: xs, y_: ys},
options=run_options, run_metadata=run_metadata)
writer.add_run_metadata(run_metadata=run_metadata, tag=("tag%d"%i), global_step=i)
print("After %d training step(s), loss on training batch is %g."%(step, loss_value))
else:
_, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys})
- 左侧栏的按钮下拉菜单可以选择图中显示的程序运行次数。
- 可以选择显示计算图的结构以及计算图中节点计算所用的时间和内存
-
下图显示计算图中节点计算所用时间
-
下图显示计算图中节点计算所用内存
-
标签:
深度学习
, tensorflow
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· 开发者必知的日志记录最佳实践
· winform 绘制太阳,地球,月球 运作规律
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 上周热点回顾(3.3-3.9)