Elasticsearch高级搜索排序( 中文+拼音+首字母+简繁转换+特殊符号过滤)

一、先摆需求:

1、中文搜索、英文搜索、中英混搜   如:“南京东路”,“cafe 南京东路店”

2、全拼搜索、首字母搜索、中文+全拼、中文+首字母混搜   如:“nanjingdonglu”,“njdl”,“南京donglu”,“南京dl”,“nang南东路”,“njd路”等等组合

3、简繁搜索、特殊符号过滤搜索   如:“龍馬”可通过“龙马”搜索,再比如 L.G.F可以通过lgf搜索,café可能通过cafe搜索

4、排序优先级为: 以关键字开头>包含关键字

 

二、生产效果图:

 

三、实现

1、索引设计

使用multi_field为搜索字段建立不同类型的索引,有全拼索引、首字母简写索引、Ngram索引以及IK索引,从各个角度分别击破,然后通过char-filter进行特殊符号与简繁转换。

curl -XPUT localhost:9200/search_words_index -d '{
   "settings" : {
      "refresh_interval" : "5s",
      "number_of_shards" : 1,
      "number_of_replicas" : 1,
      "analysis" : {
             "filter": {
                "edge_ngram_filter": { 
                    "type":     "edge_ngram",
                    "min_gram": 1,
                    "max_gram": 50                    
                },                
                "pinyin_simple_filter":{
                    "type" : "pinyin",
                    "keep_first_letter":true,
                    "keep_separate_first_letter" : false,
                    "keep_full_pinyin" : false,
                    "keep_original" : false,
                    "limit_first_letter_length" : 50,
                    "lowercase" : true
                },
                "pinyin_full_filter":{
                    "type" : "pinyin",
                    "keep_first_letter":false,
                    "keep_separate_first_letter" : false,
                    "keep_full_pinyin" : true,                        
                    "none_chinese_pinyin_tokenize":true,
                    "keep_original" : false,
                    "limit_first_letter_length" : 50,
                    "lowercase" : true
                },
                "t2s_convert":{
                      "type": "stconvert",
                      "delimiter": ",",
                      "convert_type": "t2s"
               }
            },
            "char_filter" : {
                "charconvert" : {
                    "type" : "mapping",
                    "mappings_path":"char_filter_text.txt"
                }
            },    
            "tokenizer":{
                "ik_smart":{
                   "type":"ik",
                   "use_smart":true                
                }
            },
            "analyzer": {
                "ngramIndexAnalyzer": {
                    "type": "custom",
                    "tokenizer": "keyword",
                    "filter": ["edge_ngram_filter","lowercase"],
                    "char_filter" : ["charconvert"]
                },
                "ngramSearchAnalyzer": {
                    "type": "custom",
                    "tokenizer": "keyword",   
                    "filter":["lowercase"],
                    "char_filter" : ["charconvert"]
                },    
                "ikIndexAnalyzer": {
                    "type": "custom",
                    "tokenizer": "ik",                   
                    "char_filter" : ["charconvert"]
                },
                "ikSearchAnalyzer": {
                    "type": "custom",
                    "tokenizer": "ik",                       
                    "char_filter" : ["charconvert"]
                },                    
                "pinyiSimpleIndexAnalyzer":{                   
                    "tokenizer" : "keyword",
                    "filter": ["pinyin_simple_filter","edge_ngram_filter","lowercase"]                                    
                },                
                "pinyiSimpleSearchAnalyzer":{
                    "tokenizer" : "keyword",     
                    "filter": ["pinyin_simple_filter","lowercase"]    
                },
                "pinyiFullIndexAnalyzer":{                   
                    "tokenizer" : "keyword",
                    "filter": ["pinyin_full_filter","lowercase"]                                    
                },                
                "pinyiFullSearchAnalyzer":{
                    "tokenizer" : "keyword",     
                    "filter": ["pinyin_full_filter","lowercase"]    
                }
            }
       }
    },
    "mappings": {       
        "search_words_type": {        
            "properties": {   
                "words": {
                    "type": "multi_field",                    
                    "fields":{
                          "words": {
                                "type": "string",
                                "index": "analyzed",
                                "indexAnalyzer" : "ngramIndexAnalyzer"
                          },
                          "SPY": {
                                "type": "string",
                                "index": "analyzed",
                                "indexAnalyzer" : "pinyiSimpleIndexAnalyzer"
                          },
                          "FPY": {
                                "type": "string",
                                "index": "analyzed",
                                "indexAnalyzer" : "pinyiFullIndexAnalyzer"
                          },
                          "IKS": {
                                "type": "string",
                                "index": "analyzed",
                                "indexAnalyzer" : "ikIndexAnalyzer"
                          }
                    }
                }
            }
        }
    }
}'

拼音插件的使用请参考:https://github.com/medcl/elasticsearch-analysis-pinyin

 

2、搜索构建

以下是搜索实现代码(非完整代码,只摘录核心部分,主要是思路):

  /**
     * 纯中文搜索
     * @return
     */
    public List<Map> chineseSearch(String key,Integer cityId) throws Exception{
        DisMaxQueryBuilder  disMaxQueryBuilder=QueryBuilders.disMaxQuery();
        //以关键字开头(优先级最高)
        MatchQueryBuilder q1=QueryBuilders.matchQuery("words",key).analyzer("ngramSearchAnalyzer").boost(5);        
        //完整包含经过分析过的关键字
//         boolean  whitespace=key.contains(" ");
//         int slop=whitespace?50:5;
        QueryBuilder q2=QueryBuilders.matchQuery("words.IKS", key).analyzer("ikSearchAnalyzer").minimumShouldMatch("100%");
        disMaxQueryBuilder.add(q1);
        disMaxQueryBuilder.add(q2);
        SearchQuery searchQuery=builderQuery(cityId,disMaxQueryBuilder);
        return  elasticsearchTemplate.queryForList(searchQuery,Map.class);
    }


 /**
     * 混合搜索
     * @return
     */
    public List<Map> chineseWithEnglishOrPinyinSearch(String key,Integer cityId) throws Exception{
            
        DisMaxQueryBuilder  disMaxQueryBuilder=QueryBuilders.disMaxQuery();
        //是否有中文开头,有则返回中文前缀
        String startChineseString=commonSearchService.getStartChineseString(key);        
        /**
         * 源值搜索,不做拼音转换    
         * 权重* 1.5
         */        
        QueryBuilder normSearchBuilder=QueryBuilders.matchQuery("words",key).analyzer("ngramSearchAnalyzer").boost(5f);        
        
        /**
         * 拼音简写搜索
         * 1、分析key,转换为简写  case:  南京东路==>njdl,南京dl==>njdl,njdl==>njdl
         * 2、搜索匹配,必须完整匹配简写词干
         * 3、如果有中文前缀,则排序优先
         * 权重*1
         */
        String analysisKey=commonSearchService.anaysisKeyAndGetMaxWords(SearchIndex.INDEX_NAME_SEARCHWORDSSTATISTICS,key,"pinyiSimpleSearchAnalyzer");
        QueryBuilder pingYinSampleQueryBuilder=QueryBuilders.termQuery("words.SPY", analysisKey);
        
        /**
         * 拼音简写包含匹配,如 njdl可以查出 "城市公牛 南京东路店",虽然非南京东路开头
         * 权重*0.8
         */
        QueryBuilder  pingYinSampleContainQueryBuilder=null;
        if(analysisKey.length()>1){
            pingYinSampleContainQueryBuilder=QueryBuilders.wildcardQuery("words.SPY", "*"+analysisKey+"*").boost(0.8f);
        }

        /**
         * 拼音全拼搜索
         * 1、分析key,获取拼音词干   case :  南京东路==>[nan,jing,dong,lu],南京donglu==>[nan,jing,dong,lu]
         * 2、搜索查询,必须匹配所有拼音词,如南京东路,则nan,jing,dong,lu四个词干必须完全匹配
         * 3、如果有中文前缀,则排序优先  
         * 权重*1
         */
        QueryBuilder pingYinFullQueryBuilder=null;
        if(key.length()>1){
            pingYinFullQueryBuilder=QueryBuilders.matchPhraseQuery("words.FPY", key).analyzer("pinyiFullSearchAnalyzer");    
        }

        /**
         * 完整包含关键字查询(优先级最低,只有以上四种方式查询无结果时才考虑)
         * 权重*0.8
         */
        QueryBuilder containSearchBuilder=QueryBuilders.matchQuery("words.IKS", key).analyzer("ikSearchAnalyzer").minimumShouldMatch("100%");
                
        disMaxQueryBuilder
        .add(normSearchBuilder)
        .add(pingYinSampleQueryBuilder)    
        .add(containSearchBuilder);
        
        //以下两个对性能有一定的影响,故作此判定,单个字符不执行此类搜索
        if(pingYinFullQueryBuilder!=null){
            disMaxQueryBuilder.add(pingYinFullQueryBuilder);
        }
        if(pingYinSampleContainQueryBuilder!=null){
            disMaxQueryBuilder.add(pingYinSampleContainQueryBuilder);
        }        
        
        QueryBuilder queryBuilder=disMaxQueryBuilder;
        
        //关键如果有中文,则必须包含在内容中
        if(StringUtils.isNotBlank(startChineseString)){
            queryBuilder=    QueryBuilders.filteredQuery(disMaxQueryBuilder,
                    FilterBuilders.queryFilter(QueryBuilders.queryStringQuery("*"+startChineseString+"*").field("words").analyzer("ngramSearchAnalyzer")));
            queryBuilder=QueryBuilders.functionScoreQuery(queryBuilder)
            .add(FilterBuilders.queryFilter(QueryBuilders.matchQuery("words",startChineseString).analyzer("ngramSearchAnalyzer")), ScoreFunctionBuilders.weightFactorFunction(1.5f));
        }                
    
        SearchQuery searchQuery=builderQuery(cityId,queryBuilder);
        
        return  elasticsearchTemplate.queryForList(searchQuery,Map.class);
    }    

 

注:以上JAVA示例代码皆以spring-data-elasticsearch框架为基础。

拼音插件安装:

1、下载拼音插件,官网地址:https://github.com/medcl/elasticsearch-analysis-pinyin  我下载的版本是:elasticsearch-analysis-pinyin-1.3.3。

把下载的 elasticsearch-analysis-pinyin-1.3.3.jar与nlp-lang-1.7.jar放于plugins目录下。

2、修改elasticsearch配置文件,在最后一行之下加入(里面包括IK配置,如果未安装IK可省略IK的配置):

index:
analysis:
analyzer:
ik:
alias: [news_analyzer_ik,ik_analyzer]
type: org.elasticsearch.index.analysis.IkAnalyzerProvider
ik_max_word:
type: ik
use_smart: false
ik_smart:
type: ik
use_smart: true
pinyin:
tokenizer: pinyin_tokenizer
filter: [standard,nGram]
tokenizer:
pinyin_tokenizer:
type: pinyin
first_letter: "prefix"
padding_char: ""

 

3、定制特殊符号及简繁转换文本:char_filter_text.txt,由于文件有点长,以下是部分内容,参考格式即可。

à=>a
á=>a
â=>a
ä=>a
À=>a
Â=>a
Ä=>a
è=>e
é=>e
ê=>e
ë=>e
È=>e
É=>e
Ê=>e
Ë=>e
î=>i
ï=>i
Î=>i
Ï=>i
ô=>o
ö=>o
Ô=>o
Ö=>o
ù=>u
û=>u
ü=>u
Ù=>u
Û=>u
Ü=>u
ç=>c
œ=>c
&=>
^=>
.=>
·=>
-=>
'=>
’=>
‘=>
/=>
醯壶=>醯壶
屢顧爾僕=>屡顾尔仆
見=>见
往裡=>往里
置言成範=>置言成范
捲動=>卷动
規=>规
齣電視=>出电视
覎=>觃
後堂=>后堂

 

4、重启elasticsearch,重建索引,看是否生效。

posted on 2017-04-06 18:29  虾米&老黄牛  阅读(31010)  评论(12编辑  收藏  举报

导航