BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd
Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2534 Solved: 1129
[Submit][Status][Discuss]
Description
给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.
Input
一个整数N
Output
如题
Sample Input
4
Sample Output
4
HINT
hint
对于例子(2,2),(2,4),(3,3),(4,2)
1<=N<=10^7
Source
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?
题目分析:两种姿势,莫比乌斯反演或者欧拉函数,先说简单的方法。欧拉函数,由于仅仅有一个上界n,所以变换一下1 <= x / p, y / p <= n / p,GCD(x / p, y / p) == 1,
直接求欧拉函数,令num[i]表示1到i中 1<=x,y<=i 且gcd(x,y) == 1个对数,显然有num[i] = 1 + phi[j] * 2,(1 < j <= i),这个1指的是(1, 1)。乘2是由于(1, 2) (2, 1)算两个不同的,那么最后依据我们先前变换的公式。累加num[n / p]的值就可以
#include <cstdio> #include <cstring> #define ll long long int const MAX = 1e7 + 5; int p[MAX], phi[MAX]; bool prime[MAX]; ll num[MAX]; int pnum; void get_eular(int n) { pnum = 0; memset(prime, true, sizeof(prime)); for(int i = 2; i <= n; i++) { if(prime[i]) { p[pnum ++] = i; phi[i] = i - 1; } for(int j = 0; j < pnum && i * p[j] <= n; j++) { prime[i * p[j]] = false; if(i % p[j] == 0) { phi[i * p[j]] = phi[i] * p[j]; break; } phi[i * p[j]] = phi[i] * (p[j] - 1); } } } int main() { int n; ll ans = 0; scanf("%d", &n); get_eular(n); num[1] = 1; for(int i = 2; i <= n; i++) num[i] = num[i - 1] + 2 * phi[i]; for(int i = 0; i < pnum; i++) if(n / p[i] > 0) ans += num[n / p[i]]; printf("%lld\n", ans); }
这题也能够用莫比乌斯反演做。还是做上述变换。1 <= x / p, y / p <= n / p,GCD(x / p, y / p) == 1,这样的题真的做烂了,懒得说了直接贴
#include <cstdio> #include <cstring> #include <algorithm> #define ll long long using namespace std; int const MAX = 1e7 + 5; int mob[MAX], p[MAX], sum[MAX]; bool prime[MAX]; int pnum; void Mobius(int n) { pnum = 0; memset(prime, true, sizeof(prime)); memset(sum, 0, sizeof(sum)); mob[1] = 1; sum[1] = 1; for(int i = 2; i <= n; i++) { if(prime[i]) { p[pnum ++] = i; mob[i] = -1; } for(int j = 0; j < pnum && i * p[j] <= n; j++) { prime[i * p[j]] = false; if(i % p[j] == 0) { mob[i * p[j]] = 0; break; } mob[i * p[j]] = -mob[i]; } sum[i] = sum[i - 1] + mob[i]; } } ll cal(int n) { ll res = 0; for(int i = 1, last = 0; i <= n; i = last + 1) { last = n / (n / i); res += (ll) (n / i) * (n / i) * (sum[last] - sum[i - 1]); } return res; } int main() { int n; ll ans = 0; scanf("%d", &n); Mobius(n); for(int i = 0; i < pnum; i++) if(n / p[i] > 0) ans += cal(n / p[i]); printf("%lld\n", ans); }