最小生成树。有权无向图。把所有点连通起来的最小权重。
k算法:
// Kruskal算法模版(洛谷)
// 静态空间实现
// 测试链接 : https://www.luogu.com.cn/problem/P3366
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.Arrays;
// 时间复杂度O(m * log m) + O(n + m)
public class Main {
// 思路:根据边排序。从小到大。遍历边。
// 俩个点合并。
// 如果边的俩个点已经合并过了。那么就跳过。
// 结束条件:收集到了n-1条边。
public static int MAXN = 5001;
public static int MAXM = 200001;
public static int[] father = new int[MAXN];
// u, v, w
public static int[][] edges = new int[MAXM][3];
public static int n, m;
public static void build() {
for (int i = 1; i <= n; i++) {
father[i] = i;
}
}
public static int find(int i) {
if (i != father[i]) {
father[i] = find(father[i]);
}
return father[i];
}
// 如果x和y本来就是一个集合,返回false
// 如果x和y不是一个集合,合并之后返回true
public static boolean union(int x, int y) {
int fx = find(x);
int fy = find(y);
if (fx != fy) {
father[fx] = fy;
return true;
} else {
return false;
}
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
StreamTokenizer in = new StreamTokenizer(br);
PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
while (in.nextToken() != StreamTokenizer.TT_EOF) {
n = (int) in.nval;
in.nextToken();
m = (int) in.nval;
build();
for (int i = 0; i < m; i++) {
in.nextToken();
edges[i][0] = (int) in.nval;
in.nextToken();
edges[i][1] = (int) in.nval;
in.nextToken();
edges[i][2] = (int) in.nval;
}
Arrays.sort(edges, 0, m, (a, b) -> a[2] - b[2]);
int ans = 0;
int edgeCnt = 0; // 收集的边的个数。
for (int[] edge : edges) {
if (union(edge[0], edge[1])) {
edgeCnt++;// 有效边+1
ans += edge[2]; // 答案累计
}
}
out.println(edgeCnt == n - 1 ? ans : "orz");
}
out.flush();
out.close();
br.close();
}
}