POJ 1141 Brackets Sequence(区间DP)
Brackets Sequence
Description Let us define a regular brackets sequence in the following way:
1. Empty sequence is a regular sequence. 2. If S is a regular sequence, then (S) and [S] are both regular sequences. 3. If A and B are regular sequences, then AB is a regular sequence. For example, all of the following sequences of characters are regular brackets sequences: (), [], (()), ([]), ()[], ()[()] And all of the following character sequences are not: (, [, ), )(, ([)], ([(] Some sequence of characters '(', ')', '[', and ']' is given. You are to find the shortest possible regular brackets sequence, that contains the given character sequence as a subsequence. Here, a string a1 a2 ... an is called a subsequence of the string b1 b2 ... bm, if there exist such indices 1 = i1 < i2 < ... < in = m, that aj = bij for all 1 = j = n. Input The input file contains at most 100 brackets (characters '(', ')', '[' and ']') that are situated on a single line without any other characters among them.
Output Write to the output file a single line that contains some regular brackets sequence that has the minimal possible length and contains the given sequence as a subsequence.
Sample Input ([(] Sample Output ()[()] Source |
d[i][j]表示从下标i到下标j最少需要加多少括号才能成为合法序列。0<=i<=j<len (len为输入序列的长度)。
v[i][j]为输入序列从下标i到下标j的断开位置,如果没有断开则为-1。
当i==j时,d[i][j]为1
当s[i]=='(' && s[j]==')' 或者 s[i]=='[' && s[j]==']'时,d[i][j]=d[i+1][j-1]
否则d[i][j]=min{d[i][k]+d[k+1][j],d[i][j]} i<=k<j ,v[i][j]记录断开的位置k
输出结果时采用递归方式输出print(0, len-1)
输出函数定义为print(int i, int j),表示输出从下标i到下标j的合法序列
当i>j时,直接返回,不需要输出
当i==j时,d[i][j]为1,至少要加一个括号,如果s[i]为'(' 或者')',输出"()",否则输出"[]"
当i<j时,如果c[i][j]>=0,说明从i到j断开了,则递归调用print(i, c[i][j]);和print(c[i][j]+1, j);
如果c[i][j]<0,说明没有断开,如果s[i]=='(' 则输出'('、 print(i+1, j-1); 和")"
否则输出"[" print(i+1, j-1);和"]"
#include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<stdlib.h> #include<algorithm> using namespace std; const int MAXN=100+5; const int INF=0x3f3f3f3f; char s[MAXN]; int dp[MAXN][MAXN],v[MAXN][MAXN],len; void solve() { for(int i=0;i<len;i++) dp[i][i]=1; for(int i=1;i<len;i++) { for(int k=0;k+i<len;k++) { int p=k+i; dp[k][p]=INF; if( (s[k]=='('&&s[p]==')') || (s[k]=='['&&s[p]==']') ) { dp[k][p]=dp[k+1][p-1]; v[k][p]=-1; } for(int j=k;j<p;j++) { if(dp[k][j]+dp[j+1][p]<dp[k][p]) { dp[k][p]=dp[k][j]+dp[j+1][p]; v[k][p]=j; } } } } return ; } void print(int star,int en) { if(star>en) return ; else if(star==en) { if(s[star]=='(' || s[star]==')') printf("()"); if(s[star]=='[' || s[star]==']') printf("[]"); return ; } else if(v[star][en]==-1) { printf("%c",s[star]); print(star+1,en-1); printf("%c",s[en]); } else { print(star,v[star][en]); print(v[star][en]+1,en); } return ; } int main() { memset(dp,0,sizeof(dp)); memset(v,0,sizeof(v)); memset(s,0,sizeof(s)); scanf("%s",s); len=strlen(s); solve(); print(0,len-1); printf("\n"); return 0; }