摘要:
1. Different types of neurons Linear neurons Binary threshold neurons Recitified linear neurons sigmoid neurons Stochastic binary neurons 2. Reinforce 阅读全文
摘要:
1. Pandas plotting Output: 2. Seaborn Output: joint plots Second example Third example Output: 阅读全文
摘要:
1. Subplots Output: 2 .Histogram Output: Output: 3. Box plots Output: 4. Heartmap Output: 5. Animation Output: 6. Interactivity Mousing clickigng Outp 阅读全文
摘要:
1. Matplotlib Backend Layer Deals with th e rendering of plots to screen or files In jupyter notebooks, we use the inline backend Artist Layer Contain 阅读全文
摘要:
1. Visualization wheel dimensions Abstraction - Figuration boxes and charts(abstraction) or real-world physical objects(figuration) Functionality - De 阅读全文
摘要:
1. Reading csv File 2. Dates and times demo # Numpy introduction Output 1 [1 2 3] 2 (2L, 3L) 3 4 The use of arange: 5 [ 0 2 4 6 8 10 12 14 16 18 20 22 阅读全文
摘要:
1. Hierarchical clustering Avoid choosing number of clusters beforehand Dendrograms help visualize different clustering granularities (no need to reru 阅读全文
摘要:
1. Mixed membership model This model wants to discover a set of memberships In contrast, cluster models aim at discovering a single membership In clus 阅读全文
摘要:
1. Probabilistic clustering model (k-means) Hard assignments do not tell the full story, capture the uncertainty k-means only considers the cluster ce 阅读全文
摘要:
,1.One nearest neighbor Input: Query article: Xq Corpus of documents (N docs): (X1, X2, X3,... ,XN) output : XNN = min disance(Xq, Xi) 2. K-NN Algorit 阅读全文