Unity Shader案例03-------自发光效果
![](https://img2023.cnblogs.com/blog/2515658/202303/2515658-20230328135825810-168641642.png)
Shader "CLF/SetLightting" { Properties { _MainColor("MainColor", Color) = (0,0,0,1) //模型主颜色 _InSideRimColor("InSideRimColor", Color) = (1,1,1,1)//内边缘光颜色 _InSideRimPower("InSideRimPower", Range(0.0,5)) = 0 //边缘光强度 ,这个值可以控制菲涅尔影响范围的大小,这个值越大,效果上越边缘化 _InSideRimIntensity("InSideRimIntensity", Range(0.0, 10)) = 0 //边缘光强度系数 这个值是反射的强度, 值越大,返回的强度越大,导致边缘的颜色不那么明显 _OutSideRimColor("OutSideRimColor", Color) = (1,1,1,1)//外边缘光颜色 _OutSideRimSize("OutSideRimSize", Float) = 0 //因为外边缘光,需要把模型外扩,这是外扩大小 _OutSideRimPower("OutSideRimPower", Range(0.0,5)) = 0 //边缘光强度 ,这个值可以控制菲涅尔影响范围的大小,这个值越大,效果上越边缘化 _OutSideRimIntensity("OutSideRimIntensity", Range(0.0, 10)) = 0 //边缘光强度系数 这个值是反射的强度, 值越大,返回的强度越大,导致边缘的颜色不那么明显 } SubShader { Tags { "RenderType" = "Opaque" } LOD 100 Pass //内边缘光pass { CGPROGRAM #pragma vertex vert #pragma fragment frag #include "UnityCG.cginc" #include "Lighting.cginc" uniform float4 _MainColor; uniform float4 _InSideRimColor; uniform float _InSideRimPower; uniform float _InSideRimIntensity; struct appdata { float4 vertex : POSITION; float2 uv : TEXCOORD0; float3 normal : NORMAL; float4 tangent : TANGENT; }; struct v2f { float2 uv : TEXCOORD0; float3 normal : TEXCOORD1; float4 vertex : SV_POSITION; float4 vertexWorld : TEXCOORD2; }; v2f vert(appdata v) { v2f o; o.normal = mul(unity_ObjectToWorld, float4(v.normal,0)).xyz; o.vertex = UnityObjectToClipPos(v.vertex); o.vertexWorld = mul(unity_ObjectToWorld, v.vertex); o.uv = v.uv; return o; } fixed4 frag(v2f i) : SV_Target { i.normal = normalize(i.normal);//下面计算方式套用菲涅尔计算 float3 worldViewDir = normalize(_WorldSpaceCameraPos.xyz - i.vertexWorld.xyz);//获取单位视角方向 相机世界空间位置减去顶点世界空间位置 half NdotV = max(0, dot(i.normal, worldViewDir));//计算法线方向和视角方向点积,约靠近边缘夹角越大,值约小,那就是会越在圆球中间约亮,越边缘约暗 NdotV = 1.0 - NdotV;//这里需求是越边缘约亮,所以需要反一下,这里用1 减下 float fresnel = pow(NdotV,_InSideRimPower) * _InSideRimIntensity;//使用上面的属性参数,这里不多说 float3 Emissive = _InSideRimColor.rgb * fresnel; //配置上属性里面的内边缘光颜色 return _MainColor + float4(Emissive,1);//最后加在本体主颜色就即可 } ENDCG } Pass //外边缘光pass { Cull Front //需要正面剔除,否则模型主pass渲染会看不到 Blend SrcAlpha One // 需要设置成透明叠加 CGPROGRAM #pragma vertex vert #pragma fragment frag #include "UnityCG.cginc" #include "Lighting.cginc" uniform float4 _OutSideRimColor; uniform float _OutSideRimSize; uniform float _OutSideRimPower; uniform float _OutSideRimIntensity; struct appdata { float4 vertex : POSITION; float2 uv : TEXCOORD0; float3 normal : NORMAL; float4 tangent : TANGENT; }; struct v2f { float2 uv : TEXCOORD0; float3 normal : TEXCOORD1; float4 vertex : SV_POSITION; float4 vertexWorld : TEXCOORD2; }; v2f vert(appdata v) { v2f o; o.normal = mul(unity_ObjectToWorld, float4(v.normal,0)).xyz; v.vertex.xyz += v.normal * _OutSideRimSize; //顶点进行外扩 o.vertex = UnityObjectToClipPos(v.vertex); o.vertexWorld = mul(unity_ObjectToWorld, v.vertex); o.uv = v.uv; return o; } fixed4 frag(v2f i) : SV_Target { i.normal = normalize(i.normal);//**下面计算方式套用菲涅尔计算区别在下面2点** //float3 worldViewDir = normalize(_WorldSpaceCameraPos.xyz - i.vertexWorld.xyz); float3 worldViewDir = normalize(i.vertexWorld.xyz - _WorldSpaceCameraPos.xyz);//**区别1**:因为顶点外扩,法线不变, 这里需要反过来,顶点世界空间位置减去相机世界空间位置 half NdotV = dot(i.normal, worldViewDir); //NdotV = 1.0-NdotV;//**区别2**:因为需求是发光内强外弱,在模型外扩之后,这里就不需要反了 float fresnel = pow(saturate(NdotV),_OutSideRimPower) * _OutSideRimIntensity;//配置上属性里面的外边缘光颜色 return float4(_OutSideRimColor.rgb,fresnel);//这里最终计算的值,只需要用来处理返回颜色的Alpha透明度 } ENDCG } } }