[MCM] PSO粒子群算法解决TSP问题
%% 该文件演示基于TSP-PSO算法 clc;clear %% 模拟随机产生数据 x=1:1:100;x=x(:); y = randi([10,100],100,1); data=[ones(100,1), x ,y]; cityCoor=[data(:,2) data(:,3)];%城市坐标矩阵,第一维是编号 figure plot(cityCoor(:,1),cityCoor(:,2),'ks','LineWidth',1,'MarkerEdgeColor','k','MarkerFaceColor','r') legend('城市位置') title('城市分布图','fontsize',12) xlabel('km','fontsize',12) ylabel('km','fontsize',12) %ylim([min(cityCoor(:,2))-1 max(cityCoor(:,2))+1]) for i = 1:size(cityCoor,1) text(cityCoor(i,1),cityCoor(i,2),[' ' num2str(i)]); end set(gca,'LineWidth',1.5); %边框加粗,美观 grid on axis([0 1.1*max(x) 0 1.1*max(y)]); %设置尺寸大小 %% 计算城市间距离 n=size(cityCoor,1); %城市数目 cityDist=zeros(n,n); %城市距离矩阵 for i=1:n %!!!!!!!!!若城市之间的路线带权,则可将cityDist改为权重 for j=1:n if i~=j cityDist(i,j)=((cityCoor(i,1)-cityCoor(j,1))^2+... (cityCoor(i,2)-cityCoor(j,2))^2)^0.5; end cityDist(j,i)=cityDist(i,j); end end nMax=500; %进化次数 迭代次数 indiNumber=1000; %个体数目 过小陷入局部最优 individual=zeros(indiNumber,n); %^初始化粒子位置 for i=1:indiNumber individual(i,:)=randperm(n); end %% 计算种群适应度 indiFit=fitness(individual,cityCoor,cityDist); %这里cityCoor只需要用到城市的数目,不需要用到坐标 [value,index]=min(indiFit); tourPbest=individual; %当前个体最优 tourGbest=individual(index,:) ; %当前全局最优 recordPbest=inf*ones(1,indiNumber); %个体最优记录 recordGbest=indiFit(index); %群体最优记录 xnew1=individual; %% 循环寻找最优路径 L_best=zeros(1,nMax); for N=1:nMax N %标记迭代次数 %计算适应度值 indiFit=fitness(individual,cityCoor,cityDist); %更新当前最优和历史最优 for i=1:indiNumber if indiFit(i)<recordPbest(i) recordPbest(i)=indiFit(i); tourPbest(i,:)=individual(i,:); end if indiFit(i)<recordGbest recordGbest=indiFit(i); tourGbest=individual(i,:); end end [value,index]=min(recordPbest); recordGbest(N)=recordPbest(index); %% 交叉操作 for i=1:indiNumber % 与个体最优进行交叉 c1=unidrnd(n-1); %产生交叉位 c2=unidrnd(n-1); %产生交叉位 while c1==c2 c1=round(rand*(n-2))+1; c2=round(rand*(n-2))+1; end chb1=min(c1,c2); chb2=max(c1,c2); cros=tourPbest(i,chb1:chb2); ncros=size(cros,2); %删除与交叉区域相同元素 for j=1:ncros for k=1:n if xnew1(i,k)==cros(j) xnew1(i,k)=0; for t=1:n-k temp=xnew1(i,k+t-1); xnew1(i,k+t-1)=xnew1(i,k+t); xnew1(i,k+t)=temp; end end end end %插入交叉区域 xnew1(i,n-ncros+1:n)=cros; %新路径长度变短则接受 dist=0; for j=1:n-1 dist=dist+cityDist(xnew1(i,j),xnew1(i,j+1)); end dist=dist+cityDist(xnew1(i,1),xnew1(i,n)); if indiFit(i)>dist individual(i,:)=xnew1(i,:); end % 与全体最优进行交叉 c1=round(rand*(n-2))+1; %产生交叉位 c2=round(rand*(n-2))+1; %产生交叉位 while c1==c2 c1=round(rand*(n-2))+1; c2=round(rand*(n-2))+1; end chb1=min(c1,c2); chb2=max(c1,c2); cros=tourGbest(chb1:chb2); ncros=size(cros,2); %删除与交叉区域相同元素 for j=1:ncros for k=1:n if xnew1(i,k)==cros(j) xnew1(i,k)=0; for t=1:n-k temp=xnew1(i,k+t-1); xnew1(i,k+t-1)=xnew1(i,k+t); xnew1(i,k+t)=temp; end end end end %插入交叉区域 xnew1(i,n-ncros+1:n)=cros; %新路径长度变短则接受 dist=0; for j=1:n-1 dist=dist+cityDist(xnew1(i,j),xnew1(i,j+1)); end dist=dist+cityDist(xnew1(i,1),xnew1(i,n)); if indiFit(i)>dist individual(i,:)=xnew1(i,:); end %% 变异操作 c1=round(rand*(n-1))+1; %产生变异位 c2=round(rand*(n-1))+1; %产生变异位 while c1==c2 c1=round(rand*(n-2))+1; c2=round(rand*(n-2))+1; end temp=xnew1(i,c1); xnew1(i,c1)=xnew1(i,c2); xnew1(i,c2)=temp; %新路径长度变短则接受 dist=0; for j=1:n-1 dist=dist+cityDist(xnew1(i,j),xnew1(i,j+1)); end dist=dist+cityDist(xnew1(i,1),xnew1(i,n)); if indiFit(i)>dist individual(i,:)=xnew1(i,:); end end [value,index]=min(indiFit); L_best(N)=indiFit(index); tourGbest=individual(index,:); end %% 结果作图 figure plot(L_best) title('算法训练过程') xlabel('迭代次数') ylabel('适应度值') legend('最短距离') set(gca,'LineWidth',1.5); %边框加粗,美观 grid on figure hold on plot([cityCoor(tourGbest(1),1),cityCoor(tourGbest(n),1)],[cityCoor(tourGbest(1),2),... cityCoor(tourGbest(n),2)],'ks-','Markersize',8,'LineWidth',1,'MarkerEdgeColor','k','MarkerFaceColor','r') text(cityCoor(1,1),cityCoor(1,2),[' ' num2str(i)]); hold on for i=2:n plot([cityCoor(tourGbest(i-1),1),cityCoor(tourGbest(i),1)],[cityCoor(tourGbest(i-1),2),... cityCoor(tourGbest(i),2)],'ks-','Markersize',8,'LineWidth',1,'MarkerEdgeColor','k','MarkerFaceColor','r') text(cityCoor(i,1),cityCoor(i,2),[' ' num2str(i)]); hold on end legend('规划路径') title('规划路径','fontsize',10) xlabel('km','fontsize',10) ylabel('km','fontsize',10) grid on disp(['最短距离:' num2str(L_best(:,nMax))]); disp(['最短路径:' num2str( [tourGbest tourGbest (1)] )]); startx=x(tourGbest (1)); %起点x坐标 starty=y(tourGbest (1)); %起点y坐标 endx=x(tourGbest (n)); endy=y(tourGbest (n)); text(startx,starty,' 起点'); %标记起点 text(endx,endy,' 终点')%标记终点 set(gca,'LineWidth',1.5); %边框加粗,美观 axis([0 1.1*max(x) 0 1.1*max(y)]); %设置尺寸大小
function indiFit=fitness(x,cityCoor,cityDist) %% 该函数用于计算个体适应度值 %x input 个体 %cityCoor input 城市坐标 %cityDist input 城市距离 %indiFit output 个体适应度值 m=size(x,1); n=size(cityCoor,1); indiFit=zeros(m,1); for i=1:m for j=1:n-1 indiFit(i)=indiFit(i)+cityDist(x(i,j),x(i,j+1)); end indiFit(i)=indiFit(i)+cityDist(x(i,1),x(i,n)); end
function dist=dist(x,D) n=size(x,2); dist=0; for i=1:n-1 dist=dist+D(x(i),x(i+1)); end dist=dist+D(x(1),x(n)); %测算距离
由于每次数据随机 不一致 所以 最终结果不稳定 可用固定的数据进行测试
最短距离:893.5288
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】凌霞软件回馈社区,博客园 & 1Panel & Halo 联合会员上线
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步