博客搬运工 - python的缺陷列表

        有人对陷阱的定义是这样的:代码看起来可以工作,但不是以你“想当然“”的方式。如果一段代码直接出错,抛出了异常,并不认为这是陷阱。比如,Python程序员应该都遇到过的“UnboundLocalError", 示例:

>>> a=1
>>> def func():
...     a+=1
...     print a
... 
>>> func()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
 File "<stdin>", line 2, in func

 UnboundLocalError: local variable 'a' referenced before assignment

         对于UnboundLocalError",还有更高级的版本:

import random

def func(ok):
    if ok:
        a = random.random()
    else:
        import random
        a = random.randint(1, 10)
    return a

func(True)# UnboundLocalError: local variable 'random' referenced before assignment

        可能对于很多python新手来说,这个Error让人摸不着头脑。但我认为这不算陷阱,因为这段代码一定会报错,而不是默默的以错误的方式运行。不怕真小人,就怕伪君子。我认为缺陷就好比伪君子。

 第一 :以mutable对象作为默认参数

        这个估计是最广为人知的了,Python和其他很多语言一样,提供了默认参数,默认参数确实是个好东西,可以让函数调用者忽略一些细节(比如GUI编程,Tkinter,QT),对于lambda表达式也非常有用。但是如果使用了可变对象作为默认参数,那么事情就不那么愉快了:

>>> def f(lst = []):
...     lst.append(1)
...     return lst
...
>>> f()
[1]
>>> f()
[1, 1]
# 究其原因,python中一切都是对象,函数也不列外,默认参数只是函数的一个属性。而默认参数在函数定义的时候已经求值了。
# Default parameter values are evaluated when the function definition is executed. 

        stackoverflow上有一个更适当的例子来说明默认参数是在定义的时候求值,而不是调用的时候。

>>> import time
>>> def report(when=time.time()):
...     return when
...
>>> report()
1500113234.487932
>>> report()
1500113234.487932

        对于这种问题 python docoment 给出了标准的解决办法:
A way around this is to use None as the default, and explicitly test for it in the body of the function

>>> def report(when=None):
...     if when is None:
...             when = time.time()
...     return when
...
>>> report()
1500113446.746997
>>> report()
1500113448.552873

第二 :x += y vs x = x + y

        一般来说,二者是等价的,至少看起来是等价的(这也是陷阱的定义 -- 看起来都OK,但不一定正确)。

>>> x=1;x += 1;print x
2
>>> x=1;x = x+1;print x
2
>>> x=[1];x+=[2];print x
[1, 2]
>>> x=[1];x=x+[2];print x
[1, 2]
# 呃,被光速打脸了?那么再来看:
>>> x=[1]; print id(x); x=x+[2]; print id(x)
4357132800
4357132728
>>> x=[1]; print id(x); x+=[2]; print id(x)
4357132800
4357132800

# 前者x指向一个新的对象,后者x在原来的对象是修改,当然,那种效果是正确的取决于应用场景。至少,得知道,二者有时候并不一样

第三 :神奇的小括号-- ( )

        小括号(parenthese)在各种编程语言中都有广泛的应用,python中,小括号还能表示元组(tuple)这一数据类型, 元组是immutable的序列。

>>> a = (1, 2)
>>> type(a)
<type 'tuple'>
>>> type(())
<type 'tuple'>

# 但如果只有一个元素时:
>>> a=(1)
>>> type(a)

        神奇不神奇,如果要表示只有一个元素的元组,正确的姿势是:

>>> a=(1, )
>>> type(a)
<type 'tuple'>

第四:生成一个元素是列表的列表

        这个有点像二维数组,当然生成一个元素是字典的列表也是可以的,更通俗的说,生成一个元素是可变对象的序列

  很简单嘛:

>>> a= [[]] * 10
>>> a
[[], [], [], [], [], [], [], [], [], []]
>>> a[0].append(10)
>>> a[0]
[10]

        看起来很不错,简单明了,but:

>>> a[1]
[10]
>>> a
[[10], [10], [10], [10], [10], [10], [10], [10], [10], [10]]
>>> a = [[]]* 10
>>> id(a[0]);id(a[1])
2072362817928
2072362817928

        我猜,这应该是你预期的结果吧,究其原因,还是因为python中list是可变对象,上述的写法大家都指向的同一个可变对象,正确的姿势

>>> a = [[] for i in range(10)]
>>> a[0].append(10)
>>> a
[[10], [], [], [], [], [], [], [], [], []]

>>> id(a[0]);id(a[1])
2072362817544
2072362817224

        另外一个在实际编码中遇到的问题,dict.fromkeys, 也有异曲同工之妙: 创建的dict的所有values指向同一个对象。

  fromkeys(seq[, value])

Create a new dictionary with keys from seq and values set to value. 

第五 :在访问列表的时候,修改列表

        列表(list)在python中使用非常广泛,当然经常会在访问列表的时候增加或者删除一些元素。

比如,下面这个函数,删掉列表中为3的倍数的元素:

>>> def modify_lst(lst):
...     for idx, elem in enumerate(lst):
...             if elem % 3 == 0:
...                     del lst[idx]
... 

  测试一下,
>>> lst = [1,2,3,4,5,6]
>>> modify_lst(lst)
>>> lst 
[1, 2, 4, 5]
    好像没什么错,不过这只是运气好
>>> lst = [1,2,3,6,5,4]
>>> modify_lst(lst)
>>> lst
[1, 2, 6, 5, 4]

  上面的例子中,6这个元素就没有被删除。如果在modify_lst函数中print idx, item就可以发现端倪:lst在变短,但idx是递增的,所以在上面出错的例子中,当3被删除之后,6变成了lst的第2个元素(从0开始)。在C++中,如果遍历容器的时候用迭代器删除元素,也会有同样的问题。

  如果逻辑比较简单,使用list comprehension是不错的注意

l = [1, 2, 3, 6, 9, 12, 10, 5, 4]
ret = filter(lambda x: x % 3 is not 0, l)
for i in ret:
    print(i)
print(list(ret))
################ 方法二 ################
ret = map(lambda x:0 if x%3 == 0 else x,l)
>>> list(ret)
[1, 2, 0, 0, 0, 0, 10, 5, 4]
>>> new = set(list(ret))
[1, 2, 0, 10, 5, 4]
>>> new.remove(0)
[1, 2, 10, 5, 4]

 第六 :闭包与lambda

这个也是老生长谈的例子,在其他语言也有类似的情况。先看一个例子:
>>> def create_multipliers():
...     return [lambda x:i*x for i in range(5)]
...
>>> for multiplier in create_multipliers():
...     print multiplier(2)
...

  create_multipliers函数的返回值时一个列表,列表的每一个元素都是一个函数 -- 将输入参数x乘以一个倍数i的函数。预期的结果时0,2,4,6,8. 但结果是5个8,意外不意外。

  由于出现这个陷阱的时候经常使用了lambda,所以可能会认为是lambda的问题,但lambda表示不愿意背这个锅。问题的本质在与python中的属性查找规则,LEGB(local,enclousing,global,bulitin),在上面的例子中,i就是在闭包作用域(enclousing),而Python的闭包是 迟绑定 , 这意味着闭包中用到的变量的值,是在内部函数被调用时查询得到的。

   解决办法也很简单,那就是变闭包作用域为局部作用域:

>>> def create_multipliers():
...     return [lambda x, i = i:i*x for i in range(5)]
...

第七 :定义__del__

        大多数计算机专业的同学可能都是先学的C、C++,构造、析构函数的概念应该都非常熟,于是,当切换到python的时候,自然也想知道有没有相应的函数。比如,在C++中非常有名的RAII,即通过构造、析构来管理资源(如内存、文件描述符)的声明周期。
        那在python中要达到同样的效果怎么做呢,即需要找到一个对象在销毁的时候一定会调用的函数,于是发现了__init__, __del__函数,可能简单写了两个例子发现确实也能工作。但事实上可能掉进了一个陷阱,在python documnet是有描述的:

  Circular references which are garbage are detected when the option cycle detector is enabled (it’s on by default), but can only be cleaned
up if there are no Python-level __del__() methods involved.

        简单来说,如果在循环引用中的对象定义了__del__,那么python gc不能进行回收,因此,存在内存泄漏的风险

第八 :不同的姿势import同一个module

        示例在stackoverflow的例子上稍作修改,假设现在有一个package叫mypackage,里面包含三个python文件:mymodule.py, main.py, __init__.py。
mymodule.py代码如下:

1 l = []
2 class A(object): 
3     pass

        main.py代码如下:

def add(x):
    from mypackage import mymodule
    mymodule.l.append(x)
    print "updated list",mymodule.l, id(mymodule)

def get():
    import mymodule
    print 'module in get', id(mymodule)
    return mymodule.l

if __name__ == '__main__':
    import sys
    sys.path.append('../')
    add(1)
    
    ret = get()
    print "lets check", ret

  运行python main.py,结果如下:  

updated list [1] 4406700752
module in get 4406700920
lets check []

        从运行结果可以看到,在add 和 get函数中import的mymodule不是同一个module,ID不同。当然,在python2.7.10中,需要main.py的第13行才能出现这样的效果。你可能会问,谁会写出第13行这样的代码呢?事实上,在很多项目中,为了import的时候方便,会往sys.path加入一堆路径。那么在项目中,大家同意一种import方式就非常有必要了

 第九 :python升级

  python3.x并不向后兼容,所以如果从2.x升级到3.x的时候得小心了,下面列举两点:

  在python2.7中,range的返回值是一个列表;而在python3.x中,返回的是一个range对象。

  map()、filter()、 dict.items()在python2.7返回列表,而在3.x中返回迭代器。当然迭代器大多数都是比较好的选择,更加pythonic,但是也有缺点,就是只能遍历一次。在instagram的分享中,也提到因为这个导致的一个坑爹的bug。

第十 :++ i  -- i

        这个陷阱主要是坑来自C、C++背景的同学。简单来说,++i是对i取两次正号,--i是对i取两次负号,运算完之后i的值不变。

第十一 : __setattr__ __getattr__ __getattribute__

        Python中有大量的magic method(形似__xx__),其中许多跟属性访问有关,比如__get__, __set__,__delete_,__getattr__, __setattr__, __delattr__, __getattribute__。前三个跟descriptor相关,详细可参见《python descriptor 详解》。

        坑爹的是,__getattr__与__setattr__相差很大,在《python属性查找(attribute look up)》一文中有详细介绍。简单说来,__setattr__与__getattribute__是对应的,都是修改python默认的属性修改、查找机制,而__getattr__只是默认查找机制无法找到属性的时候才会调用,__setattr__应该叫__setattribute__才恰当!

第负一 :GIL

  以GIL结尾,因为gil是Python中大家公认的缺陷

  从其他语言过来的同学可能看到python用threading模块,拿过来就用,结果发现效果不对啊,然后就会喷,什么鬼

总结:

  毫无疑问的说,python是非常容易上手,也非常强大的一门语言。python非常灵活,可定制化很强。同时,也存在一些陷阱,搞清楚这些陷阱能够更好的掌握、使用这么语言。本文列举了一些python中的一些缺陷,这是一份不完全列表,欢迎大家补充。

 

博客搬运地点

posted @ 2018-05-19 12:11  焦国峰的随笔日记  阅读(130)  评论(0编辑  收藏  举报
// ############################### // ##############################