scrapy + selenium 的动态爬虫

 

动态爬虫

在通过scrapy框架进行某些网站数据爬取的时候,往往会碰到页面动态数据加载的情况发生,如果直接使用scrapy对其url发请求,是绝对获取不到那部分动态加载出来的数据值。但是通过观察我们会发现,通过浏览器进行url请求发送则会加载出对应的动态加载出的数据。那么如果我们想要在scrapy也获取动态加载出的数据,则必须使用selenium创建浏览器对象,然后通过该浏览器对象进行请求发送,获取动态加载的数据值。

 

 

selenium在scrapy中使用的原理分析

当引擎将国内板块url对应的请求提交给下载器后,下载器进行网页数据的下载,然后将下载到的页面数据,封装到response中,提交给引擎,引擎将response在转交给Spiders。Spiders接受到的response对象中存储的页面数据里是没有动态加载的新闻数据的。要想获取动态加载的新闻数据,则需要在下载中间件中对下载器提交给引擎的response响应对象进行拦截,切对其内部存储的页面数据进行篡改,修改成携带了动态加载出的新闻数据,然后将被篡改的response对象最终交给Spiders进行解析操作。

 

    使用流程:
        1.在爬虫文件中实例化一个浏览器对象
        2.重写爬虫类父类一方法closed,在刚方法中关闭浏览器对象
        3.在下载中间件中process_response中:
            a:获取爬虫文件中实例化好的浏览器对象
            b:执行浏览器自动化的行为动作
            c:实例化了一个新的响应对象,并且将浏览器获取的页面源码数据加载到了该对象中
            d:返回这个新的响应对象

实操和代码

创建爬虫应用
cmd中

scrapy startproject wangyinewPro

cd wangyinewPro

scrapy genspider news ww.x.com

爬虫文件news.py

# -*- coding: utf-8 -*-
import scrapy
from wangyinewPro.items import WangyinewproItem
from selenium import webdriver
from aip import AipNlp


class NewsSpider(scrapy.Spider):
    # 百度AI
    APP_ID = '15426368'
    API_KEY = '9KgKVwSwyEyqsENo9aSfbyW8'
    SECRET_KEY = 'cKOt09e3EGpMq8uNy65x2hXru26H9p5G '

    client = AipNlp(APP_ID, API_KEY, SECRET_KEY)

    name = 'news'
    # allowed_domains = ['ww.x.com']
    start_urls = ['https://news.163.com/']
    news_url = []  # 四大板块的url

    def __init__(self):
        # 实例化selenium的谷歌浏览器对象
        self.bro = webdriver.Chrome(executable_path=r'F:\爬虫\chromedriver.exe')

    def close(self, response):
        self.bro.quit()

    def parse(self, response):
        # 获取指定板块的连接(国内,国际,军事,航空)
        li_list = response.xpath('//div[@class="ns_area list"]/ul/li')  # 新闻版块的标签
        indexs = [3, 4, 6, 7]
        new_li_list = []  # 获取四大板块
        for index in indexs:
            new_li_list.append(li_list[index])

        # 将四大板块对应的li标签进行解析(详情页的超链)
        for li in new_li_list:
            new_url = li.xpath('./a/@href').extract_first()  # 超链获得
            self.news_url.append(new_url)  # 添加4大板块的url
            print(self.news_url)
            yield scrapy.Request(url=new_url, callback=self.pares_news)


    def pares_news(self, response):
        div_list = response.xpath('//div[@class="ndi_main"]/div')  # 获得所有新闻的div标签列表
        for div in div_list:
            item = WangyinewproItem()
            item['title'] = div.xpath('./a/img/@alt').extract_first()  # 获取标题
            item['img_url'] = div.xpath('./a.img/@src').extract_first()  # 获取图片url
            detail_url = div.xpath('./a/@href').extract_first()  # 获取详情页的url

            yield scrapy.Request(url=detail_url, callback=self.pares_detail, meta={'item': item})

    def pares_detail(self, response):
        item = response.meta['item']
        content = response.xpath('//div[@id="endText"]//text()').extract()
        item['content'] = ''.join(content).strip(' \n\t')

        # 调用百度AI的接口,提取文章的类型和关键字
        # 关键字
        keys = self.client.keyword(item['title'].replace(u'\xa0', u''),
                                   item['content'].replace(u'\xa0', u''))  # 由于gbk格式报错,所以替换下
        key_list = []
        for dic in keys['items']:  # 百度AI返回的是{items:{'score':0.89, 'tag':'手机'}} 这种类型
            key_list.append(dic['tag'])  # 添加分类
        item['keys'] = ''.join(key_list)  # 返回来的所有类型以字符串形式添加到item的keys属性中

        # 类型(分类)
        kinds = self.client.topic(item['title'].replace(u'\xa0', u''), item['content'].replace(u'\xa0', u''))
        item['kind'] = kinds['item']['lv1_tag_list'][0]['tag']  # 获得一级分页的分类

        # print(item['keys'], item['kind'])
        yield item

items.py文件中

import scrapy


class WangyinewproItem(scrapy.Item):
    # define the fields for your item here like:
    title = scrapy.Field()
    content = scrapy.Field()
    img_url = scrapy.Field()
    kind = scrapy.Field()
    keys = scrapy.Field()

下载中间件 middlewares.py中

# -*- coding: utf-8 -*-

# Define here the models for your spider middleware
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/spider-middleware.html

from scrapy import signals
from time import sleep
from scrapy.http import HtmlResponse  # 新的响应对象


class WangyinewproDownloaderMiddleware(object):
    # Not all methods need to be defined. If a method is not defined,
    # scrapy acts as if the downloader middleware does not modify the
    # passed objects.

    def process_request(self, request, spider):
        return None

    def process_response(self, request, response, spider):
        # Called with the response returned from the downloader.

        # Must either;
        # - return a Response object
        # - return a Request object
        # - or raise IgnoreRequest
        # 其实url收到请求后,拦截后使用创建好的浏览器对象进行动态获取数据
        if request.url in spider.news_url:  # 如果当前其请求的url再四大板块中的url
            bro = spider.bro  # 获取spider程序对象中的bro(浏览器实例化对象)
            bro.get(url=request.url)  # 发送请求
            sleep(5)
            js = 'window.scroll(0,document.body.scrollHeight)'  # 滑动,整个body的高度 的js代码
            bro.execute_script(js)  # 执行滑动到底部的js
            sleep(1)  # 等待一秒
            bro.execute_script(js)  # 执行滑动到底部的js
            sleep(1)  # 等待一秒
            bro.execute_script(js)  # 执行滑动到底部的js
            sleep(1)  # 等待一秒

            # 我们需求中需要的数据源(携带了动态加载出来新闻数据的页面源码数据)
            page_text = bro.page_source
            # 创建一个新的响应对象,并且将上述获取的数据内容加载到该相应对象中
            r = HtmlResponse(
                url=spider.bro.current_url,  # 当前浏览器打开的url对应的url
                body=page_text,  # 新的相应对象的内容是page_text
                encoding='utf-8',  # 编码
                request=request  # 当前响应对应的request
            )
            return r
        return response  # 如果是其他的请求 不做拦截

    def process_exception(self, request, exception, spider):
        pass

注意  先创建sql库和表

sql中
create database spider;

use spider;

create table news(title varchar(100),content text,img_url varchar(100),kind varchar(100),new_keys varchar(100))

管道pipelines.py文件中

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
import pymysql


class WangyinewproPipeline(object):
    conn = None
    cursor = None

    def open_spider(self, spider):
        self.conn = pymysql.Connect(host='127.0.0.1', port=3306, user='root', password='123', db='spider')
        print(self.conn)

    def process_item(self, item, spider):
        print(item)
        self.cursor = self.conn.cursor()
        sql = 'insert into news values("%s","%s","%s","%s","%s")' % (  
            item['title'], item['content'], item['img_url'], item['keys'], item['kind'])
        print(sql)
        try:
            self.cursor.execute(sql)
            self.conn.commit()
        except Exception as e:
            print(e)
            self.conn.rollback()
        return item

    def close_spider(self, spider):
        self.cursor.close()
        self.conn.close()

配置settings.py文件中

USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36'

ROBOTSTXT_OBEY = False

DOWNLOADER_MIDDLEWARES = {
   'wangyinewPro.middlewares.WangyinewproDownloaderMiddleware': 543,
}

ITEM_PIPELINES = {
   'wangyinewPro.pipelines.WangyinewproPipeline': 300,
}

COOKIES_ENABLED = False
LOG_LEVEL = 'ERROR'
RETRY_ENABLED = False

 

posted @ 2019-01-15 21:51  洛丶丶丶  阅读(743)  评论(0编辑  收藏  举报