算法--字符串:最长回文子序列
转自:labuladong公众号
子序列问题是常见的算法问题,而且并不好解决。
首先,子序列问题本身就相对子串、子数组更困难一些,因为前者是不连续的序列,而后两者是连续的,就算穷举都不容易,更别说求解相关的算法问题了。
而且,子序列问题很可能涉及到两个字符串,比如让你求两个字符串的 最长公共子序列,如果没有一定的处理经验,真的不容易想出来。所以本文就来扒一扒子序列问题的套路,其实就有两种模板,相关问题只要往这两种思路上想,十拿九稳。
一般来说,这类问题都是让你求一个最长子序列,一旦涉及到子序列和最值,那几乎可以肯定,考察的是动态规划技巧,时间复杂度一般都是 O(n^2)。
一、两种思路
1、第一种思路模板是一个一维的 dp 数组:
int n = array.length; int[] dp = new int[n]; for (int i = 1; i < n; i++) { for (int j = 0; j < i; j++) { dp[i] = 最值(dp[i], dp[j] + ...) } }
举个我们写过的例子 最长递增子序列,在这个思路中 dp 数组的定义是:
在子数组array[0..i]
中,以array[i]
结尾的目标子序列(最长递增子序列)的长度是dp[i]
。
为啥最长递增子序列需要这种思路呢?前文说得很清楚了,因为这样符合归纳法,可以找到状态转移的关系,这里就不具体展开了。
2、第二种思路模板是一个二维的 dp 数组:
int n = arr.length; int[][] dp = new dp[n][n]; for (int i = 0; i < n; i++) { for (int j = 1; j < n; j++) { if (arr[i] == arr[j]) dp[i][j] = dp[i][j] + ... else dp[i][j] = 最值(...) } }
这种思路运用相对更多一些,尤其是涉及两个字符串/数组的子序列。本思路中 dp 数组含义又分为「只涉及一个字符串」和「涉及两个字符串」两种情况。
2.1 涉及两个字符串/数组时(比如最长公共子序列),dp 数组的含义如下:
在子数组arr1[0..i]
和子数组arr2[0..j]
中,我们要求的子序列(最长公共子序列)长度为dp[i][j]
。
2.2 只涉及一个字符串/数组时(比如本文要讲的最长回文子序列),dp 数组的含义如下:
在子数组array[i..j]
中,我们要求的子序列(最长回文子序列)的长度为dp[i][j]
。
第一种情况可以参考这两篇旧文:详解编辑距离 和 最长公共子序列。
二、最长回文子序列
之前解决了 最长回文子串 的问题,这次提升难度,求最长回文子序列的长度:
我们说这个问题对 dp 数组的定义是:在子串s[i..j]
中,最长回文子序列的长度为dp[i][j]
。一定要记住这个定义才能理解算法。
为啥这个问题要这样定义二维的 dp 数组呢?我们前文多次提到,找状态转移需要归纳思维,说白了就是如何从已知的结果推出未知的部分,这样定义容易归纳,容易发现状态转移关系。
具体来说,如果我们想求dp[i][j]
,假设你知道了子问题dp[i+1][j-1]
的结果(s[i+1..j-1]
中最长回文子序列的长度),你是否能想办法算出dp[i][j]
的值(s[i..j]
中,最长回文子序列的长度)呢?
可以!这取决于s[i]
和s[j]
的字符:
如果它俩相等,那么它俩加上s[i+1..j-1]
中的最长回文子序列就是s[i..j]
的最长回文子序列:
如果它俩不相等,说明它俩不可能同时出现在s[i..j]
的最长回文子序列中,那么把它俩分别加入s[i+1..j-1]
中,看看哪个子串产生的回文子序列更长即可:
以上两种情况写成代码就是这样:
if (s[i] == s[j]) // 它俩一定在最长回文子序列中 dp[i][j] = dp[i + 1][j - 1] + 2; else // s[i+1..j] 和 s[i..j-1] 谁的回文子序列更长? dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
至此,状态转移方程就写出来了,根据 dp 数组的定义,我们要求的就是dp[0][n - 1]
,也就是整个s
的最长回文子序列的长度。
三、代码实现
首先明确一下 base case,如果只有一个字符,显然最长回文子序列长度是 1,也就是dp[i][j] = 1,(i == j)
。
因为i
肯定小于等于j
,所以对于那些i > j
的位置,根本不存在什么子序列,应该初始化为 0。
另外,看看刚才写的状态转移方程,想求dp[i][j]
需要知道dp[i+1][j-1]
,dp[i+1][j]
,dp[i][j-1]
这三个位置;再看看我们确定的 base case,填入 dp 数组之后是这样:
为了保证每次计算dp[i][j]
,左、下、左下三个方向的位置已经被计算出来,只能斜着遍历或者反着遍历:
选择反着遍历,代码如下:
1 int longestPalindromeSubseq(string s) { 2 int n = s.size(); 3 // dp 数组全部初始化为 0 4 vector<vector<int>> dp(n, vector<int>(n, 0)); 5 // base case 6 for (int i = 0; i < n; i++) 7 dp[i][i] = 1; 8 // 反着遍历保证正确的状态转移 9 for (int i = n - 1; i >= 0; i--) { 10 for (int j = i + 1; j < n; j++) { 11 // 状态转移方程 12 if (s[i] == s[j]) 13 dp[i][j] = dp[i + 1][j - 1] + 2; 14 else 15 dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 16 } 17 } 18 // 整个 s 的最长回文子串长度 19 return dp[0][n - 1]; 20 }
主要还是正确定义 dp 数组的含义,遇到子序列问题,首先想到两种动态规划思路,然后根据实际问题看看哪种思路容易找到状态转移关系。
另外,找到状态转移和 base case 之后,一定要观察 DP table,看看怎么遍历才能保证通过已计算出来的结果解决新的问题