牛客-小a的旅行计划 + 数学推导
题意:
小a终于放假了,它想在假期中去一些地方游玩,现在有N个景点,编号为,同时小b也想出去游玩。由于一些特殊♂原因,他们的旅行计划必须满足一些条件
首先,他们可以从这N个景点中任意选几个游玩
设小a选出的景点集合为A,小b选的景点集合为B,则需要满足
1. A,B的交集不能为空集
2. A,B不能相互包含(A=B也属于相互包含)
注意:在这里我们认为(A,B)是无序的,即(A,B)和(B,A)是同一种方案
思路:
这道题如果手推的思路是这样的。先枚举A的个数的种类,然后枚举从A中选定几个为共有的个数,最后枚举B的个数的种类。
(注意图中标红处为-1,原来答案错了)
然后经过拆解,就可以得到答案。
$$ \frac{-3 * 3^n + 4^n - 1}{2} + 3 * 2^{n-1}$$
// #pragma GCC optimize(3) // #pragma comment(linker, "/STACK:102400000,102400000") //c++ // #pragma GCC diagnostic error "-std=c++11" // #pragma comment(linker, "/stack:200000000") // #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") // #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3) #include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; #define lson (l, mid, rt << 1) #define rson (mid + 1, r, rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; // typedef __int128 bll; typedef pair<ll, ll> pll; typedef pair<int, int> pii; typedef pair<int, pii> p3; // priority_queue<int> q;//这是一个大根堆q // priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second // #define endl '\n' #define OKC \ ios::sync_with_stdio(false); \ cin.tie(0) #define FT(A, B, C) for (int A = B; A <= C; ++A) // 用来压行 #define REP(i, j, k) for (int i = j; i < k; ++i) #define max3(a, b, c) max(max(a, b), c); // priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; // 2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; // 18 const int mod = 1e8 + 7; const double esp = 1e-8; const double PI = acos(-1.0); const double PHI = 0.61803399; // 黄金分割点 const double tPHI = 0.38196601; template <typename T> inline T read(T &x) { x = 0; int f = 0; char ch = getchar(); while (ch < '0' || ch > '9') f |= (ch == '-'), ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x = f ? -x : x; } /*-----------------------showtime----------------------*/ ll ksm(ll a, ll b) { ll res = 1; while (b > 0) { if (b & 1) res = res * a % mod; b >>= 1; a = a * a % mod; } return res % mod; } int main() { ll n; cin >> n; ll ans = ksm(2, 2ll * n - 1) % mod + 3ll * ksm(2, n - 1) % mod - ((ksm(3, n + 1) + 1) % mod * ksm(2, mod - 2) % mod); cout << (ans + mod) % mod << endl; return 0; }
skr