北京2018网络赛 hihocoder#1828 : Saving Tang Monk II (BFS + DP +多开一维)
hihocoder 1828 :https://hihocoder.com/problemset/problem/1828
学习参考:https://www.cnblogs.com/tobyw/p/9691431.html
题意:
给定一个图中,让你回答从S点跑到T点的最短时间。“.”点是可以直接走上去,耗时+1,“P”加速点,就是不耗时就可以走上去,“#”毒气点,必须要有氧气瓶才能进入,且耗时+2,“B”是氧气瓶补给点,每次进去可以得到一个氧气瓶,但是你最多可以携带5个氧气瓶,耗时+1。
思路:
我觉得这道题看到5个氧气瓶的限制是个关键。可以给每个点开5个空间(准确的说是6个,还有0的情况),这样就直接bfs转移就可以了。自己练习的时候一直没想到再多开一维。现在想想,感觉能看见和想到高维度的人都好神奇。
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; //#pragma GCC optimize(3) //#pragma comment(linker, "/STACK:102400000,102400000") //c++ // #pragma GCC diagnostic error "-std=c++11" // #pragma comment(linker, "/stack:200000000") // #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") // #pragma GCC optimize("-fdelete-null-pointer-checks,inline-functions-called-once,-funsafe-loop-optimizations,-fexpensive-optimizations,-foptimize-sibling-calls,-ftree-switch-conversion,-finline-small-functions,inline-small-functions,-frerun-cse-after-loop,-fhoist-adjacent-loads,-findirect-inlining,-freorder-functions,no-stack-protector,-fpartial-inlining,-fsched-interblock,-fcse-follow-jumps,-fcse-skip-blocks,-falign-functions,-fstrict-overflow,-fstrict-aliasing,-fschedule-insns2,-ftree-tail-merge,inline-functions,-fschedule-insns,-freorder-blocks,-fwhole-program,-funroll-loops,-fthread-jumps,-fcrossjumping,-fcaller-saves,-fdevirtualize,-falign-labels,-falign-loops,-falign-jumps,unroll-loops,-fsched-spec,-ffast-math,Ofast,inline,-fgcse,-fgcse-lm,-fipa-sra,-ftree-pre,-ftree-vrp,-fpeephole2",3) #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) #define max3(a,b,c) max(max(a,b), c); //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 ll mod = 10007; const double esp = 1e-8; const double PI=acos(-1.0); const double PHI=0.61803399; //黄金分割点 const double tPHI=0.38196601; template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar(); while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x=f?-x:x; } /*-----------------------showtime----------------------*/ const int maxn = 209; int n,m; int sx,sy,ex,ey; char mp[maxn][maxn]; int dp[maxn][maxn][10],vis[maxn][maxn]; int nx[4][4] = { {1,0},{0,1},{-1,0},{0,-1} }; struct state { int x,y,cnt; state(int x,int y,int s):x(x),y(y),cnt(s){} }; int main(){ while(~scanf("%d%d", &n, &m) && n+m){ memset(dp,inf,sizeof(dp)); for(int i=0; i<n; i++){ scanf("%s", mp[i]); for(int j=0; j<m; j++){ if(mp[i][j] == 'S')sx=i,sy=j; if(mp[i][j] == 'T')ex=i,ey=j; } } queue<state>que; que.push(state(sx,sy,0)); dp[sx][sy][0]=0; while(!que.empty()){ state t = que.front(); que.pop(); for(int i=0; i<4; i++){ int px = t.x + nx[i][0]; int py = t.y + nx[i][1]; if(px<0||py<0||px>=n||py>=m)continue; // vis[px][py] = 1; if(mp[px][py]=='.' || mp[px][py] == 'S'){ if(dp[px][py][t.cnt] > dp[t.x][t.y][t.cnt]+1){ dp[px][py][t.cnt] = dp[t.x][t.y][t.cnt]+1; que.push(state(px,py,t.cnt)); } } else if(mp[px][py] == '#'){ if(t.cnt&&dp[px][py][t.cnt-1] > dp[t.x][t.y][t.cnt]+2){ dp[px][py][t.cnt-1] = dp[t.x][t.y][t.cnt]+2; que.push(state(px,py,t.cnt-1)); } } else if(mp[px][py] == 'B'){ if(t.cnt<5 && dp[px][py][t.cnt+1] > dp[t.x][t.y][t.cnt]+1){ dp[px][py][t.cnt+1] = dp[t.x][t.y][t.cnt]+1; que.push(state(px,py,t.cnt+1)); } else if(t.cnt == 5 && dp[px][py][t.cnt] > dp[t.x][t.y][t.cnt]+1){ dp[px][py][t.cnt] = dp[t.x][t.y][t.cnt]+1; que.push(state(px,py,t.cnt)); } } else if(mp[px][py] == 'T'){ if(dp[px][py][t.cnt] > dp[t.x][t.y][t.cnt]+1){ dp[px][py][t.cnt] = dp[t.x][t.y][t.cnt]+1; } } else if(mp[px][py] == 'P'){ if(dp[px][py][t.cnt] > dp[t.x][t.y][t.cnt]){ dp[px][py][t.cnt] = dp[t.x][t.y][t.cnt]; que.push(state(px,py,t.cnt)); } } } } int ans = inf; for(int i=0; i<=5; i++){ ans = min(ans, dp[ex][ey][i]); } if(ans < inf)printf("%d\n", ans); else puts("-1"); } return 0; }
skr