POJ-3169 Layout (差分约束+SPFA)

POJ-3169 Layout:http://poj.org/problem?id=3169

参考:https://blog.csdn.net/islittlehappy/article/details/81155802

题意:

  一共有n头牛,有ml个关系好的牛的信息,有md个关系不好的牛的信息,对应输入的第一行的三个元素,接下来ml行,每行三个元素A,B,D,表示A牛和B牛相距不希望超过D,接下来md行,每行三个元素A,B,D表示A牛和B牛的相距至少要有D才行。求1号牛和n号牛的最大距离,如果距离无限大输出-2,如果无解输出-1。

思路:

  设dis [ x ] 为x 到 0 位置的距离,  v 的标号大于 u

  我们要求 dis [ n ] -  dis [ 1 ] <=x   即,x是n号牛与1号牛的最大距离

  对于ml的关系好的牛有:    dis [ v ] - dis [ u ] <= w;     ------->       dis [ v ] <=   dis [ u ]  +  w;    建一条从u到v,权值为   w  边

  对于md的关系差的牛有:   dis [ v ] - dis [ u ] >= w;    --------->     dis [ u ] <=   dis [ v ]  -  w;     建一条从v到u,权值为  -w  边

  则:我们的目标 是 dis [ v ] <=   dis [ u ]  +  x;   若碰到  dis [ v ]    >   dis [ u ]  +  x  边进行松弛

  因此,应该跑最短路

 

#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert>
using namespace std;
//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000")  //c++
#define lson (l, mid, rt << 1)
#define rson (mid + 1, r, rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue

typedef long long ll;
typedef unsigned long long ull;

typedef pair<ll, ll> pll;
typedef pair<int, int> pii;
typedef pair<int, pii> p3;

//priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n'

#define OKC                      \
    ios::sync_with_stdio(false); \
    cin.tie(0)
#define FT(A, B, C) for (int A = B; A <= C; ++A) //用来压行
#define REP(i, j, k) for (int i = j; i < k; ++i)
//priority_queue<int ,vector<int>, greater<int> >que;

const ll mos = 0x7FFFFFFF;  //2147483647
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //18
const int mod = 1e9 + 7;
const double esp = 1e-8;
const double PI = acos(-1.0);

template <typename T>
inline T read(T &x) {
    x = 0;
    int f = 0;
    char ch = getchar();
    while (ch < '0' || ch > '9') f |= (ch == '-'), ch = getchar();
    while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar();
    return x = f ? -x : x;
}

/*-----------------------showtime----------------------*/
const int maxn = 1e6 + 9;
vector<pii> mp[maxn];
int in[maxn], cnt[maxn], dis[maxn], n;
bool spfa(int s, int t) {
    memset(in, 0, sizeof(in));
    memset(dis, inf, sizeof(dis));
    memset(cnt, 0, sizeof(cnt));
    queue<int> que;
    que.push(s);
    dis[s] = 0;
    in[s] = 1;
    cnt[s]++;
    bool flag = false;
    while (!que.empty()) {
        int u = que.front();
        que.pop();
        in[u] = 0;
        if (cnt[u] > n) {
            flag = true;
            break;
        }
        for (int i = 0; i < mp[u].size(); i++) {
            int v = mp[u][i].fi;

            if (dis[v] > dis[u] + mp[u][i].se) {
                dis[v] = dis[u] + mp[u][i].se;
                if (in[v] == 0) {
                    in[v] = 1;
                    que.push(v);
                    cnt[v]++;
                }
            }
        }
    }
    if (flag) return true;
    return false;
}
int main() {
    int m1, m2;
    scanf("%d%d%d", &n, &m1, &m2);
    for (int i = 1; i <= m1; i++) {
        int u, v, w;
        scanf("%d%d%d", &u, &v, &w);
        mp[u].pb(pii(v, w));
    }
    for (int i = 1; i <= m2; i++) {
        int u, v, w;
        scanf("%d%d%d", &u, &v, &w);
        mp[v].pb(pii(u, -w));
    }
    if (spfa(1, n) == false) {
        if (dis[n] >= inf)
            printf("-2\n");
        else
            printf("%d\n", dis[n]);
    } else
        printf("-1\n");

    return 0;
}
View Code

 

扩展

 

posted @ 2018-09-06 13:47  ckxkexing  阅读(174)  评论(0编辑  收藏  举报