POJ-1062 昂贵的聘礼 (最短路)

POJ-1062 昂贵的聘礼:http://poj.org/problem?id=1062

题意:

  有一个人要到1号点花费最少的钱,他可以花费一号点对应的价格,也可以先买下其他一些点,使得费用降低。

思路:

  这个题目的转化比较巧妙,由于每个点都可以由一些点转移过来,有可能降低了到这个点的费用。于是就想到了建图跑最短路。我的建图思路是,n个点能转移的都连起来,然后再设n+1为原点,连向每一个点,费用为直接和这个点交易的价格。当然这道题还有一个限制,就是一条路上交易的人的等级不能超过M,那我们可以枚举每一个等级,设这个等级为最低点,跑n次dji最短路即可。

#include <algorithm>
#include  <iterator>
#include  <iostream>
#include   <cstring>
#include   <cstdlib>
#include   <iomanip>
#include    <bitset>
#include    <cctype>
#include    <cstdio>
#include    <string>
#include    <vector>
#include     <stack>
#include     <cmath>
#include     <queue>
#include      <list>
#include       <map>
#include       <set>
#include   <cassert>
using namespace std;
//#pragma GCC optimize(3)
//#pragma comment(linker, "/STACK:102400000,102400000")  //c++
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue



typedef long long ll;
typedef unsigned long long ull;

typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3;

//priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n'

#define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A)  //用来压行
#define REP(i , j , k)  for(int i = j ; i <  k ; ++i)
//priority_queue<int ,vector<int>, greater<int> >que;

const ll mos = 0x7FFFFFFF;  //2147483647
const ll nmos = 0x80000000;  //-2147483648
const int inf = 0x3f3f3f3f;       
const ll inff = 0x3f3f3f3f3f3f3f3f; //18
const int mod = 1e9+7;
const double esp = 1e-8;
const double PI=acos(-1.0);



template<typename T>
inline T read(T&x){
    x=0;int f=0;char ch=getchar();
    while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar();
    while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
    return x=f?-x:x;
}


/*-----------------------showtime----------------------*/
            const int maxn = 109;
            int d[maxn],dis[maxn];
            int m,n;
            vector<pii>mp[maxn];

            void dji(){
                memset(dis,inf,sizeof(dis));
                priority_queue<pii>que;
                dis[n+1] = 0;
                que.push(pii(0,n+1));
                while(!que.empty()){
                    pii tmp = que.top();que.pop();
                    int u = tmp.se;

                    if(dis[u] < -1*tmp.fi)continue;
                    
                    for(int i=0; i<mp[u].size(); i++){
                        int v = mp[u][i].fi;

                        if( d[v] >= d[n+1] && d[v] <= d[n+1] + m &&dis[v] > dis[u] + mp[u][i].se){
                            dis[v] = dis[u] + mp[u][i].se;
                            que.push(pii(-dis[v], v));
                        }
                    }
                }

            }
int main(){
            
            scanf("%d%d", &m, &n);
            for(int i=1; i<=n; i++){
                int c,x;
                scanf("%d%d%d", &c, &d[i], &x);
                mp[n+1].pb(pii(i,c));
                for(int j=1; j<=x; j++){
                    int id,v;
                    scanf("%d%d", &id, &v);
                    mp[id].pb(pii(i,v));
                }
            }
            int ans = inf;
            for(int i=1; i<=n; i++){
                d[n+1] = d[i];
                dji();    
                ans = min(ans, dis[1]);
            }
            printf("%d\n", ans);
            return 0;
}
POJ 1062

 

posted @ 2018-09-06 09:50  ckxkexing  阅读(108)  评论(0编辑  收藏  举报