poj - 1860 Currency Exchange Bellman-Ford 判断正环
Currency Exchange POJ - 1860
题意:
有许多货币兑换点,每个兑换点仅支持两种货币的兑换,兑换有相应的汇率和手续费。你有s这个货币 V 个,问是否能通过合理地兑换货币,使得你手中的货币折合成s后是有增加的。
思路:
这道题在建立每种货币的兑换关系后,找到图中的正环即可,因为你沿着正环跑就可以增加价值。这里可以用类似Bellman_Ford判断负环的方法。
#include <algorithm> #include <iterator> #include <iostream> #include <cstring> #include <cstdlib> #include <iomanip> #include <bitset> #include <cctype> #include <cstdio> #include <string> #include <vector> #include <stack> #include <cmath> #include <queue> #include <list> #include <map> #include <set> #include <cassert> using namespace std; //#pragma GCC optimize(3) //#pragma comment(linker, "/STACK:102400000,102400000") //c++ #define lson (l , mid , rt << 1) #define rson (mid + 1 , r , rt << 1 | 1) #define debug(x) cerr << #x << " = " << x << "\n"; #define pb push_back #define pq priority_queue typedef long long ll; typedef unsigned long long ull; typedef pair<ll ,ll > pll; typedef pair<int ,int > pii; typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q //priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q #define fi first #define se second //#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0) #define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行 #define REP(i , j , k) for(int i = j ; i < k ; ++i) //priority_queue<int ,vector<int>, greater<int> >que; const ll mos = 0x7FFFFFFF; //2147483647 const ll nmos = 0x80000000; //-2147483648 const int inf = 0x3f3f3f3f; const ll inff = 0x3f3f3f3f3f3f3f3f; //18 const int mod = 1e9+7; const double esp = 1e-8; const double PI=acos(-1.0); template<typename T> inline T read(T&x){ x=0;int f=0;char ch=getchar(); while (ch<'0'||ch>'9') f|=(ch=='-'),ch=getchar(); while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar(); return x=f?-x:x; } /*-----------------------showtime----------------------*/ const int maxn = 1200; struct edge { int u,v; double c,r; }e[maxn]; int n,m,s,tot = 0; bool flag; double val,dis[maxn]; void add(int u,int v,double c,double r){ e[++tot].u = u; e[tot].v = v; e[tot].c = c; e[tot].r = r; } double get(int i){ return 1.0*(dis[e[i].u] - e[i].c) * e[i].r; } bool bellman_ford(){ for(int i=1; i<=n; i++)dis[i] = 0.0; dis[s] = val; for(int i=1; i<n; i++){ flag = true; for(int j=1; j<=tot; j++){ if(dis[e[j].v] < get(j)) { dis[e[j].v] = get(j); flag = false; } } if(dis[s] > val)return true; if(flag) break; } for(int i=1; i<=tot; i++){ if(dis[e[i].v] < get(i)){ return true; } } return false; } int main(){ scanf("%d%d%d%lf", &n, &m, &s, &val); int u,v;double c1,r1,c2,r2; for(int i=1; i<=m; i++){ scanf("%d%d%lf%lf%lf%lf",&u,&v,&r1,&c1,&r2,&c2); add(u,v,c1,r1); add(v,u,c2,r2); } if(bellman_ford())puts("YES"); else puts("NO"); return 0; }
skr